首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组I:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表示.下列命题正确的是
设向量组I:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表示.下列命题正确的是
admin
2017-04-24
84
问题
设向量组I:α
1
,α
2
,…,α
r
可由向量组Ⅱ:β
1
,β
2
,…,β
s
线性表示.下列命题正确的是
选项
A、若向量组Ⅰ线性无关,则r≤s.
B、若向量组Ⅰ线性无关,则r>s.
C、若向量组Ⅱ线性无关,则r≤s.
D、若向量组Ⅱ线性无关,则r>s.
答案
A
解析
(Ⅰ)4个3维向量β
1
,β
2
,β
3
,α
i
线性相关(i=1,2,3),若β
1
,β
2
,β
4
线性无关,则α
i
可由β
1
,β
2
,β
3
线性表示(i=1,2,3),这与题设矛盾,于是β
1
,β
2
,β
3
线性相关,从而0=|β
1
,β
2
,β
3
|=
于是a=5.此时,α
1
不能由向量组β
1
,β
2
,β
3
线性表示.
考虑下列矩阵的初等行变换
[β
1
,β
2
,β
3
|α
1
,α
2
,α
3
]=
可见当a≠5时,α
1
,α
2
,α
3
可由β
1
,β
2
,β
3
线性表示;当a=5时,α
1
,α
2
不能由β
1
,β
2
,β
3
线性表示,故a=5.
(Ⅱ)令矩阵A=[α
1
,α
2
,α
3
|β
1
,β
2
,β
3
],对A施行初等行变换
从而,β
1
=2α
1
+4α
2
一α
3
,β
2
=α
1
+2α
2
,β
3
=5α
1
+10α
2
一2α
3
.
注释 本题主要考查向量空间的基本知识及求线性表示式的基本运算.
注意,3个线性无关的3维向量必可作为3维向量空间的基,从而可线性表示任一3维向量,由此立即可知题给的向量组β
1
,β
2
,β
3
线性相关,于是由矩阵[β
1
,β
2
,β
3
]的秩小于3或行列式|β
1
,β
2
,β
3
|=0,便可求出a来.
转载请注明原文地址:https://www.kaotiyun.com/show/lyt4777K
0
考研数学二
相关试题推荐
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且g’(x)≠0.证明:存在ξ∈(a,b),使得[f(a)-f(ξ)]/[g(ξ)-g(b)]=f’(ξ)/g’(ξ).
曲线y=f(x)=2xe1/x的斜渐近线为________.
函数f(x)=xe-2x的最大值为________.
求下列微分方程的通解。(ex+y-ex)dx+(ex+y+ey)dy=0
证明下列函数(C1,C2为任意常数)是方程xy"+2y’-xy=ex的通解。
在xOy坐标平面上,连续曲线L过点M(1,0),其上任意点P(x,y)(x≠0)处的切线斜率与直线OP的斜率之差等于ax(常数a>0).求L的方程。
设f(x)为连续函数:若|f(x)|≤k(k为常数),证明:当x≥0时,有|y(x)|≤(1-e-ax)。
设已知线性方程组Ax=6存在2个不同的解。求方程组Ax=b的通解.
设二次型f(x1,x2,x3)=xTAX=ax12+2x22-2x32+2bx1x3(6>o),其中二次型的矩阵A的特征值之和为1,特征值之积为-12.利用正交变换将二次型,化为标准形,并写出所用的正交变换和对应的正交矩阵.
随机试题
A、头皮下血肿B、硬脑膜下血肿C、骨膜下血肿D、硬脑膜外血肿E、帽状腱膜下血肿血肿周界止于骨缝的是()
男性,48岁,大便带血3年余,血色鲜红,有时便中滴鲜血,有时便纸上发现鲜血,病人自诉在便秘或饮酒后便血更甚,有头昏和贫血,但无疼痛不适,肛门外观有外痔皮垂。如作下列检查时最可能发现的是()
关于旋转阳极X线管阳极的描述错误的是
不属于心理评估常用方法的为
最适宜冬季施工采用的混凝土外加剂是:
按照我国现行规定,银行、单位和个人办理结算都必须遵守结算的原则是()。
自动喷水灭火系统根据不同的系统,选用不同的报警阀组,其中报警阀组可分为()。
根据支付结算法律制度的规定,下列票据中,付款人不是银行的是()。
假设某一宏观经济由下列关系和数据描述:消费曲线C=40+0.8Yd,其中,C为消费,Yd为可支配收入;货币需求曲线L=0.2Y-5r,其中,L为货币需求,Y为收入,r为利息率;投资曲线L=140-10r,其中,L为货币需求,Y为收入,r为利息率;
下列关于ZAP命令的描述中正确的是
最新回复
(
0
)