首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知 在(-∞,+∞)存在原函数,求常数A以及f(x)的原函数.
已知 在(-∞,+∞)存在原函数,求常数A以及f(x)的原函数.
admin
2020-03-16
62
问题
已知
在(-∞,+∞)存在原函数,求常数A以及f(x)的原函数.
选项
答案
易求得 [*] 仅当A=0时f(x)在x=0连续.于是f(x)在(-∞,+∞)连续,从而存在原函数.当A≠0时x=0是f(x)的第一类间断点,从而f(x)在(-∞,+∞)不存在原函数.因此求得A=0.下求f(x)的原函数. 被积函数是分段定义的连续函数,它存在原函数,也是分段定义的.由于原函数必是连续的,我们先分段求出原函数,然后把它们连续地粘合在一起,就构成一个整体的原函数. 当x<0时, [*] 当x>0时, [*] 取C
1
=0,随之取C
2
=1,于是当x→0
-
与x→0
+
时∫f(x)dx的极限同为1,这样就得到f(x)的一个 原函数 [*] 因此∫f(x)dx=F(x)+C,其中C为任意常数.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Yb84777K
0
考研数学二
相关试题推荐
已知A为n(n≥3)阶非零实矩阵,Aij为A中元素aij的代数余子式,证明:aij=一AijATA=E,且|A|=一1。
已知f(x)二阶可导,且f(x)>0,f(x)f"(x)一[f’(x)]2≥0(x∈R).(1)证明:f(x1)f(x2)≥f2x1,x2∈R);(2)若f(0)=1,证明:f(x)≥ef’(0)xx(x∈R).
求不定积分
设矩阵A=可逆,向量α=是矩阵A*的一个特征向量,λ是α对应的特征值,其中A*是A的伴随矩阵.试求a、b和λ的值.
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离恒等于该点处的切线在y轴上的截距,且L经过点求L位于第一象限部分的一条切线,使该切线与L以及两坐标轴所围图形的面积最小.
设曲线=1(0
计算不定积分
设f(x),g(x)在[a,b]上连续,且g(x)>0.利用闭区间上连续函数的性质,证明:存在一点ξ∈[a,b],使∫abf(x)g(x)=f(ξ)∫abg(x)dx.
[2003年]已知平面上三条不同直线的方程分别为l1:ax+2by+3c=0,l2:bx+2cy+3a=0,l3:cx+2ay+3b=0.试证这三条直线交于一点的充分必要条件为a+b+c=0.
[2010年]计算二重积分I=drdθ,其中D={(r,θ)∣0≤r≤secθ,0≤θ≤π/4).
随机试题
SteamshipswerefirstintroducedintotheUnitedStatesin1807,andJohnMoisonbuiltthefirststeamshipinCanada(thencalled
最佳诊断应为降压药首选
胸痹重证,阴寒极盛者,其治法是
胰岛素的不良反应有
2010年5月至2011年2月底,北京某商贸有限公司,以为大学生提供实践平台为幌子,通过签订社会实践合同,令其每人交300元学习费。以销售人员考核合格成为公司正式员工为诱惑,利用在校大学生开展推广、销售其公司产品“三凯瑞”保健品的活动。涉及北京30多所学校
混凝土施工缝宜留置在:
RLC串联电路如图7—2一11所示,在工频电压u(t)的激励下,电路的阻抗等于()。[2011年真题]
某工程项目计划工程量100m3,计划单价20元/m3,实际完成工程是150m3,实际单价18元/m3,该工程的进度偏差为()元。
下列数据结构中,属于非线性结构的是
一个项目具有…个项目主管,一个项目主管可管理多个项目,则实体“项目主管”与实体“项目”的联系属于【】的联系。
最新回复
(
0
)