首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知f(x)二阶可导,且f(x)>0,f(x)f"(x)一[f’(x)]2≥0(x∈R). (1)证明:f(x1)f(x2)≥f2 x1,x2∈R); (2)若f(0)=1,证明:f(x)≥ef’(0)xx(x∈R).
已知f(x)二阶可导,且f(x)>0,f(x)f"(x)一[f’(x)]2≥0(x∈R). (1)证明:f(x1)f(x2)≥f2 x1,x2∈R); (2)若f(0)=1,证明:f(x)≥ef’(0)xx(x∈R).
admin
2019-04-22
66
问题
已知f(x)二阶可导,且f(x)>0,f(x)f"(x)一[f’(x)]
2
≥0(x∈R).
(1)证明:f(x
1
)f(x
2
)≥f
2
x
1
,x
2
∈R);
(2)若f(0)=1,证明:f(x)≥e
f’(0)x
x(x∈R).
选项
答案
[*] 即f(x)≥e
f’(0)x
.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/i3V4777K
0
考研数学二
相关试题推荐
设则()
已知四维向量组α1,α2,α3,α4线性无关,且向量β1=α1+α3+α4,β2=α2一α4,β3=α3+α4,β4=α2+α3,β5=2α1+α2+α3.则r(β1,β2,β3,β4,β5)=()
曲线y=(x一1)2(x一3)2的拐点个数为()
设对一切的χ,有f(χ+1)=2f(χ),且当χ∈[0,1]时f(χ)=χ(χ2-1),讨论函数f(χ)在χ=0处的可导性.
设函数f(χ)满足χf′(χ)-2f(χ)=-χ,且由曲线y=f(χ),χ=1及χ轴(χ≥0)所围成的平面图形为D.若D绕χ轴旋转一周所得旋转体体积最小,求:(1)曲线y=f(χ);(2)曲线在原点处的切线与曲线及直线χ=1所围成的平面
设二阶常系数非齐次线性微分方程y〞+y′+qy=Q(χ)有特解y=3e-4χ+χ2+3χ+2,则Q(χ)=_______,该微分方程的通解为_______.
(1)设=0,求a,b的值.(2)确定常数a,b,使得ln(1+2χ)+=χ+χ2+o(χ2).(3)设b>0,且=2,求b.
设φ1(χ),φ2(χ)为一阶非齐次线性微分方程y′+P(χ)y=Q(χ)的两个线性无关的特解,则该方程的通解为().
一容器的内侧是由图中(如图1—3—6)曲线绕y轴旋转一周而成的曲面,该曲线由x2+y2=2y(y≥)与x2+y2=1(y≤)连接而成。若将容器内盛满的水从容器顶部全部抽出,至少需要做多少功?(长度单位为m,重力加速度为gm/s2,水的密度为103kg/
设f(x)=3x2+x2|x|,则使f(n)(0)存在的最高阶数n=
随机试题
结核病的首选药是
心脾两虚导致的病证有
护理人员每年参加继续护理学教育的最低学分是
对口腔吸收叙述不正确的是
应用饮水管吸取的口服药液是( )。【历年考试真题】
(2013年)2014年1月10日,甲公司向乙公司签发一张转账支票,P银行为付款人,甲公司在该支票上记载了“违约金5万元”的字样。甲公司在该支票上并未记载收款人名称,但授权乙公司补记。乙公司在支票上补记自己为收款人后,将该支票背书转让给丙公司。丙公司于20
幸弃疾的《木兰花慢》是一首“送月”诗词,对西落之月展开了一连串探索性的追问。据此回答下列问题。虽有“神悟”。但由于缺乏足够的科学知识,辛弃疾并不能解释“月轮绕地之理”及其他现象,他继续问道:“飞镜(指月亮)无根谁系?”这表明()。
【2015年黑龙江省第57题】三行三列间距相等共有九盏灯,任意亮起其中的三盏组成一个三角形,持续5秒钟后换另一个三角形。那么如此持续亮,亮完所有的三角形组合至少需要多少秒?
A、Theseamlessnessofrealitycomplicatesthenotionoflinguisticcategories,suchthatthosecategoriesmustbequestioned.B、
Ihada【16】d______timelastyearwithmyhealth.ForseveralmonthsI【17】su______fromperiodicheadachesandalmostconstantn
最新回复
(
0
)