首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有n维向量组A:a1,a2,…,an,证明它们线性无关的充分必要条件是:任一n维向量都可由它们线性表示.
设有n维向量组A:a1,a2,…,an,证明它们线性无关的充分必要条件是:任一n维向量都可由它们线性表示.
admin
2021-02-25
90
问题
设有n维向量组A:a
1
,a
2
,…,a
n
,证明它们线性无关的充分必要条件是:任一n维向量都可由它们线性表示.
选项
答案
充分性([*]):若任一n维向量都可由a
1
,a
2
,…,a
n
线性表示,则n维单位坐标向量e
1
,e
2
,…,e
n
能由a
1
,a
2
,…,a
n
线性表示,则R(e
1
,e
2
,…,e
n
)≤R(a
1
,a
2
,…,a
n
),而R(e
1
,e
2
,…,e
n
)=n,R(a
1
,a
2
,…,a
n
)≤n,所以R(a
1
,a
2
,…,a
n
)=n,即向量组a
1
,a
2
,…,a
n
线性无关. 必要性([*]):任给一n维向量b,则n+1个向量a
1
,a
2
,…,a
n
,b线性相关,而a
1
,a
2
,…,a
n
线性无关,所以向量b可由向量a
1
,a
2
,…,a
n
线性表示.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Y484777K
0
考研数学二
相关试题推荐
设矩阵,B=P—1A*P,求B+2E的特征值与特征向量,其中A*为A的伴随矩阵,E为三阶单位矩阵。
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关.(1)证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表不;(2)设α1=,α2=,β1=,β2=,求出可由两组向量同时线性表示的向量.
已知向量组(Ⅰ)能由向量组(Ⅱ)线性表出,且秩(Ⅰ)=秩(Ⅱ),证明向量组(Ⅰ)与向量组(Ⅱ)等价.
设a1,a2,a3是四元非齐次方程组Ax=b的三个解向量,且秩r(A)=3,a1=(1,2,3,4)T,a2+a3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=().
设3维向量组α1,α2线性无关,β1,β2线性无关.(Ⅰ)证明:存在非零3维向量ξ,ξ既可由α1,α2线性表出,也可由β1,β2线性表出;(Ⅱ)若α1=(1,-2,3)T,α2=(2,1,1)T,β1=(-2,1,4)T,β2=(-5,-3,5)T.求
设n元线性方程组Ax=b,其中(Ⅰ)证明行列式|A|=(n+1)an;(Ⅱ)当a为何值时,该方程组有唯一的解,并在此时求x1;(Ⅲ)当a为何值时,该方程组有无穷多解,并在此时求其通解.
设三阶矩阵A的特征值为λ1=-1,λ2=,其对应的特征向量为α1,α2,α3,令P=(2α3,-3α1,-α2),则P-1(A-1+2E)P=________
设3阶矩阵A的特征值为2,3,λ.如果|2A|=-48,则λ=______.
若3阶非零方阵B的每一列都是方程组的解,则λ=________,|B|=________.
设A,B均为n阶方阵,|A|=2,|B|=一3,则|A-1B*一A*B-1|=_______.
随机试题
邓小平历来十分重视农业问题。他强调指出:“农业搞不好,工业就没有希望,吃、穿、用的问题也解决不了。”他告诫我们:“90年代经济如果出问题,很可能出在农业上;如果农业出了问题,多少年缓不过来,整个经济和社会发展的全局就要受到严重影响。”这些话表明农业:
中华民族自古以来,遵循“_______”的原则。
主视图确定了物体上、下、左、右四个不同部位,反映了物体的________。
通过下述哪项可估价左心室后负荷
A.唇内、鼻中、通关B.顺气、脾俞、食胀C.通窍、肺俞、苏气D.关元俞、带脉、后海E.尾尖、耳尖、山根治疗牛肚胀、腹痛宜选
依据委托监理合同示范文本规定,委托人的义务包括( )。
下列不属于市政给水管网作为消防水源条件的是()。
从风险的角度分析,证券市场也是风险的直接交换场所。()
下列不属于驻外人员薪酬的主要组成部分的是()。
基音:
最新回复
(
0
)