首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
确定常数a,使向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(一2,a,4)T,β3=(一2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示.
确定常数a,使向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(一2,a,4)T,β3=(一2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示.
admin
2019-08-01
98
问题
确定常数a,使向量组α
1
=(1,1,a)
T
,α
2
=(1,a,1)
T
,α
3
=(a,1,1)
T
可由向量组β
1
=(1,1,a)
T
,β
2
=(一2,a,4)
T
,β
3
=(一2,a,a)
T
线性表示,但向量组β
1
,β
2
,β
3
不能由向量组α
1
,α
2
,α
3
线性表示.
选项
答案
记A=(α
1
,α
2
,α
3
),B=(β
1
,β
2
,β
3
),由于β
1
,β
2
,β
3
不能由α
1
,α
2
,α
3
线性表示,故秩r(A)<3,从而|A|=一 (a一1)
2
(a+2)=0,所以a=1或a=一2. 当a=1时,α
1
=α
2
=α
3
=β
1
=(1,1,1)
T
,故α
1
,α
2
,α
3
可由β
1
,β
2
,β
3
线性表示,但β
2
=(一2,1,4)
T
不能由α
1
,α
2
,α
3
线性表示,所以a=1符合题意. 当a=一2时,由下列矩阵的初等行变换 [*] 知秩r(B)=2,秩r(B|α
2
)=3,所以方程组Bx=α
2
无解,即α
2
不能由β
1
,β
2
,β
3
线性表示,故a=一2不符合题意,因此a=1. 记A= (α
1
,α
2
,α
3
),B= (β
1
,β
2
,β
3
),对矩阵(A|B)施行初等行变换: [*] 由于β
1
,β
2
,β
3
不能由α
1
,α
2
,α
3
线性表示,故r(A)<3,因此a=1或a=一2. 当a=1时,由下列矩阵的初等行变换 [*] 知秩r(A)=1,秩r(A|β
2
)=2,故方程组Ax=β
2
无解,所以β
2
不能由α
1
,α
2
,α
3
线性表示.另一方面,由于|B|=一9≠0,故Bx=α
i
(i=1,2,3)有惟一解,即α
1
,α
2
,α
3
可由β
1
,β
2
,β
3
线性表示,所以a=1符合题意. 当a=一2时,由下列矩阵的初等行变换 [*] 可知秩r(B)=2,秩r(B|α
2
)=3,故方程组Bx=α
2
无解,即α
2
不能由β
1
,β
2
,β
3
线性表示,故a=一2不符合题意,因此a=1. 记矩阵A=(α
1
,α
2
,α
3
),B=(β
1
,β
2
,β
3
).由于|B|=(a+2)(a一4),故当a≠一2且a≠4时,方程组Bx=a
j
(j=1,2,3)有解,即向量组α
1
,α
2
,α
3
可由向量组β
1
,β
2
,β
3
线性表示,当a=一2时,由初等行变换 [*] 知r(B)=2,而r(B |α
2
)一3,故方程组Bx=α
2
无解,即α
2
不能由β
1
,β
2
,β
3
线性表示,故a=一2不符合题意. 同理可知a=4不符合题意. 由题意知方程组Ax=β
j
(j=1,2,3)不全有解,故必有|A|=一(a一1)
2
(a+2)=0,所以a=1或a=一2,前已说明a=一2不符合题意,所以,只有a=1可能符合题意. 当a=1时,由初等行变换 [*] 知r(A)=1,而r(A|β
2
)=2,故方程组Ax=β
2
无解,即β
2
不能由α
1
,α
2
,α
3
线性表示.综上所述,可知只有a=1符合题意.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/VJN4777K
0
考研数学二
相关试题推荐
设A,B为n阶可逆矩阵,则().
求曲线y=3-|x2-1|与x轴围成的封闭区域绕直线y=3旋转所得的旋转体的体积.
设f(x)在x=a处可导,且f(a)≠0,则|f(x)|在x=a处().
已知η1,η2,η3,η4是齐次方程组Ax=0的基础解系,则此方程组的基础解系还可以是
设f(x)在[0,1]连续,且f(0)=f(1),证明:在[0,1]上至少存在一点ξ,使得
设f(x)在(a,b)四次可导,x0∈(a,b)使得f’’(x0)=f’’’(x0)=0,又设f(4)(x)>0(x∈(a,b)),求证f(x)在(a,b)为凹函数.
设A为n阶矩阵,α1为AX=0的一个非零解,向量组α2,α2,…,αs满足Ai-1αi=α1(i=2,3,…,s).证明α1,α2,…,αs线性无关.
求星形线的质心,其中a>0为常数.
将极坐标变换后的二重积分f(rcosθ,rsinθ)rdrdθ的如下累次积分交换积分顺序:其中F(r,θ)=f(rcosθ,rsinθ)r.
比较定积分∫0π的大小.
随机试题
甲签发一张银行承兑汇票给乙。下列有关票据关系当事人的表述中,正确的有()。(2007年)
判断甲亢严重程度最重要的临床表现是【】
中药有机氯农药残留量的检查常用( )。中药有机磷农药残留量的检查常用( )。
[2018年真题]关于斜拉桥的说法,正确的有()。
甲公司欠乙公司100万元,同时甲公司对丙公司享有150万元到期债权。甲欠乙的债务已至清偿期但无力偿还,却又不积极向丙追索债权,对此下列表述正确的()。
某班黑板旁边贴着一张班规:值日卫生不整洁者,每人每次罚款1元;上课教师提问回答不出者,每人每次罚款2元;上课迟到者,每人每次罚款3元;上课不专心听讲或交头接耳者,每人每次罚款4元;考试不及格者,每人每科罚款5元。罚款由生活委员统一收取、保管,由学习委员奖给
四川大地震在相当程度上修改或者说________了国际社会对中国的观感,那些在帐篷里坚韧不拔、有尊严地生活着的老百姓,________地前往灾区的志愿者,有力地说明了即便经历市场经济大潮的________,中华民族依然保有一些最根本的品质。填入画横线部分最
Readthefollowingarticleandanswerquestions19-25.Forquestions19-25,choosethecorrectanswerA,B,CorD.Mark
TheRedCrossisaninternationalorganization,whichcaresforpeoplewhoareinneedofhelp.AmaninaParis【C1】______whone
Mostchildrenwithhealthyappetitesarereadytoeatalmostanythingthatisofferedthemandachildrarelydislikesfood【C1】_
最新回复
(
0
)