首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵,α1为AX=0的一个非零解,向量组α2,α2,…,αs满足Ai-1αi=α1(i=2,3,…,s).证明α1,α2,…,αs线性无关.
设A为n阶矩阵,α1为AX=0的一个非零解,向量组α2,α2,…,αs满足Ai-1αi=α1(i=2,3,…,s).证明α1,α2,…,αs线性无关.
admin
2018-06-27
89
问题
设A为n阶矩阵,α
1
为AX=0的一个非零解,向量组α
2
,α
2
,…,α
s
满足A
i-1
α
i
=α
1
(i=2,3,…,s).证明α
1
,α
2
,…,α
s
线性无关.
选项
答案
用定义法 设c
1
α
1
+c
2
α
2
+…+c
s
α
s
=0(1),要推出系数c
i
都为0. 条件说明A
i
α
i
=Aα
1
=0(i=1,2,3,…,s). 用A
s-1
乘(1)的两边,得c
s
α
1
=0,则c
s
=0. 再用A
s-2
乘(1)的两边,得c
s-1
α
1
=0,则c
s-1
=0. 这样可逐个得到每个系数都为0.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/7ek4777K
0
考研数学二
相关试题推荐
已知曲线(a>0)与曲线在点(x0,y0)处有公共切线,求:(1)常数a及切点(x0,y0);(2)两曲线与x轴所围成平面图形绕x轴旋转一周所得旋转体体积Vx.
试证明n维列向量组α1,α2,…αn线性无关的充分必要条件是
设向量组α1=(a,2,10)T,α2=(-2,1,5)T,α3=(-1,1,4)T,β=(1,b,c)T.试问:当a,b,c满足什么条件时,(1)β可由3线性表出,且表示唯一?(2)β不能由α1,α2,α3线性表出?(3)β可由α1,α
已知向量组与向量组具有相同的秩,且β3可由α1,α2,α3性表示,求a,b的值.
设3阶矩阵A满足Aαi=iαi(i=1,2,3),其中列向量α1=(1,2,2)T,α2=(2,-2,1)T,α3=(-2,-1,2)T,试求矩阵A.
已知齐次线性方程组其中.试讨论a1,a2,…,an和b满足何种关系时,(1)方程组仅有零解;(2)方程组有非零解.在有非零解时,求此方程组的一个基础解系.
求微分方程y"+5y’+6y=2e-x的通解.
设f(x)二阶可导,f(0)=0,令g(x)=讨论g’(x)在x=0处的连续性.
设f(x)=求f’(x)并讨论其连续性.
随机试题
下列符合肾盂肾炎的病因发病的描述是
患者男,52岁。酗酒17年。1年来间断出现中上腹隐痛,向腰背部放散,不敢平卧,食欲差,伴消瘦。便常规:大量脂肪球。腹部超声:胰腺增大,边缘不清。为了确定诊断所需要的检查是
女性,30岁,反复痰中带血或大咯血5年,无低热、盗汗。查体:左下肺局限性、固定性干湿性啰音,胸片示左下肺纹理增粗紊乱,呈卷毛样,余肺清晰。最可能的诊断是
按照组织性质的不同,健康保险可以分为()。
下列财产或财产权利中,不属于遗产的是()。
以胡锦涛同志为总书记的党中央在邓小平理论和“三个代表”重要思想的指导下,明确提出了科学发展观.把坚持以人为本和经济社会全面、协调、可持续发展统一起来,这标志着我党对社会主义现代化建设规律的认识更加深入。这里提到的科学发展观的实质是()。
2003—2012年间,农村居民人均转移性纯收入平均每年约增加多少元?
根据以下资料,回答问题。2012年,重庆市实际利用内资项目16679个,同比增长10.5%:实际利用内资金额5914.64亿元,增长20.2%。合同资金千万元以上项目快速增长,实际引进内资5489.05亿元,增长18.6%。其中,到位资金上10
过曲线y=(x≥0)上的一点A作切线,使该切线与曲线及x轴所围成的平面区域的面积为,所围区域绕x轴旋转一周而成的体积为________.
EveryoneknowshowtogettoCarnegieHall:practice,practice,practice.Butwhatabouthowtogetintothenation’smosthonor
最新回复
(
0
)