首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
以下四个命题,正确的个数为( ) ①设f(x)是(一∞,+∞)上连续的奇函数,则∫—∞+∞f(x)dx必收敛,且∫—∞+∞f(x)dx=0。 ②设f(x)在(一∞,+∞)上连续,且∫—RRf(x)dx。 ③若∫—∞+∞f(x)
以下四个命题,正确的个数为( ) ①设f(x)是(一∞,+∞)上连续的奇函数,则∫—∞+∞f(x)dx必收敛,且∫—∞+∞f(x)dx=0。 ②设f(x)在(一∞,+∞)上连续,且∫—RRf(x)dx。 ③若∫—∞+∞f(x)
admin
2020-01-15
57
问题
以下四个命题,正确的个数为( )
①设f(x)是(一∞,+∞)上连续的奇函数,则∫
—∞
+∞
f(x)dx必收敛,且∫
—∞
+∞
f(x)dx=0。
②设f(x)在(一∞,+∞)上连续,且
∫
—R
R
f(x)dx。
③若∫
—∞
+∞
f(x)dx与∫
—∞
+∞
g(x)dx都发散,则∫
—∞
+∞
[f(x)+g(x)]dx未必发散。
④若∫
—∞
0
f(x)dx与∫
0
+∞
f(x)dx都发散,则∫
—∞
+∞
f(x)dx未必发散。
选项
A、1个。
B、2个。
C、3个。
D、4个。
答案
A
解析
∫
—∞
+∞
f(x)dx收敛←→存在常数a,使∫
—∞
a
f(x)dx和∫
a
+∞
f(x)dx都收敛,此时
∫
—∞
+∞
f(x)dx=∫
—∞
a
f(x)dx+∫
a
+∞
f(x)dx。
设f(x)=x,则f(x)是(一∞,+∞)上连续的奇函数,且
∫
—R
R
f(x)dx=0。但是
∫
—∞
0
f(x)dx=∫
—∞
0
xdx=一∞,∫
0
+∞
f(x)dx=∫
0
+∞
xdx=+∞,
故∫
—∞
+∞
f(x)dx发散,这表明命题①,②,④都不是真命题。
设f(x)=x,g(x)=一x,由上面讨论可知∫
—∞
+∞
f(x)dx与∫
—∞
+∞
g(x)dx都发散,但∫
—∞
+∞
[f(x)+g(x)]dx收敛,这表明命题③是真命题。故选A。
转载请注明原文地址:https://www.kaotiyun.com/show/XXA4777K
0
考研数学二
相关试题推荐
设A是3阶矩阵,|A|=3,且满足|A2+2A|=0,|2A2+A|=0,则A*的特征值是___________.
设是f(x)的一个原函数,则∫1exf’(x)dx=___________.
设ψ(x)=又函数f(x)在点x=0处可导,求F(x)=f[ψ(x)]的导数.
从一艘破裂的油轮中渗漏出来的油,在海面上逐渐扩散形成油层.设在扩散的过程中,其形状一直是一个厚度均匀的圆柱体,其体积也始终保持不变.已知其厚度h的减少率与h3成正比,试证明:其半径r的增加率与r3成反比.
二次型f(x1,x2,x3)=-4x1x2-8x1x3-4x2x3经过正交变换化为标准形,求:常数a,b;
设二次型f(x1,x2,x3)=(a-1)x12+(a-1)x2x2+2x3x2+2x1x2(a>0)的秩为2.用正交变换法化二次型为标准形.
已知平面区域D满足|x|≤y,(x2+y2)3≤y4,求.
设F(x)是f(x)的原函数,F(1)=若当x>0时,有f(x)F(x)=,试求f(x).
求∫(sinx-cosx)/(sinx+2cosx)dx.
随机试题
假冒他人专利情节严重的,构成犯罪,要依法追究()
症见腰部疼痛,重着而热,暑湿阴雨天气症状加重,活动后或可减轻,身体困重,小便短赤,苔黄腻,脉濡数,辨证为
关于紫外线消毒的叙述,错误的是
明达期货公司与客户吴伟签订了一份期货经纪合同,但双方未在合同中约定交易结算结果的通知方式,事后也未达成补充规定。某交易日,市场行情突变,吴伟因不知交易结算结果而继续持仓,多造成损失一万元。下列说法正确的是()。
根据《仲裁法》规定,仲裁裁决书自( )发生法律效力。
参与步行活动的肌肉其工作有一定的规律,下列叙述不正确的是()。
解放战争后期,解放区高等教育的发展趋势是
(2008年试题,10)曲线sin(xy)+In(y一x)=x在点(0,1)处的切线方程为__________.
某操作系统的当前资源分配状态如下表所示。假设当前系统可用资源R1、R2和R3的数量为(3,3,2),系统采用银行家算法实施死锁避免策略,以下是安全序列的有()。
Whatisspecialaboutbungeejumping?Fromthepassage,welearnthatthewriter______.
最新回复
(
0
)