首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=,则在实数域上与A合同的矩阵为
设A=,则在实数域上与A合同的矩阵为
admin
2017-04-24
66
问题
设A=
,则在实数域上与A合同的矩阵为
选项
A、
B、
C、
D、
答案
D
解析
记(D)中的矩阵为D,则由
知A与D有相同的特征值3与一1,它们又都是实对称矩阵,因此存在正交矩阵P与Q,使P
T
AP=
Q
T
DQ,
QP
T
APQ
T
=D,或(PQ
T
)A(PQ
T
)=D,其中PQ
T
可逆,所以A与D合同.
由于|A|=|D|=一3<0,因此实对称矩阵A的两个特征值异号(D亦是),从而知二次型x
T
Ax及二次型x
T
Dx有相同的规范形z
1
2
一z
2
2
,从矩阵角度讲,就是存在可逆矩阵C
1
,C
2
,使C
1
T
AC
1
=
=C
2
T
DC
2
,由此得(C
1
C
2
一1
)
T
A(C
1
C
2
一1
)=D,且C
1
C
一1
可逆,故A与D合同.
对于二次型f(x
1
,x
2
)=x
T
Ax=x
1
2
+4x
1
x
2
+x
2
2
,由于f(1,0)=1>0,f(一2,1)=一3<0,所以A是不定的,由顺序主子式法知备选项(A)、(B)、(C)中的矩阵分别是负定的、正定的、正定的,由于合同的矩阵有相同的正(负)定性,因此备选项(A)、(B)、(C)中的矩阵都不与矩阵A合同,只有备选项(D)正确(也易判定(D)中的矩阵是不定的).
转载请注明原文地址:https://www.kaotiyun.com/show/Wft4777K
0
考研数学二
相关试题推荐
设f(x)在[0,1]上连续,证明:存在ξ∈(0,1),使得∫0ξf(t)dt十(ξ-1)f(ξ)=0.
证明方程ex=-x2+ax+b不可能有三个不同的根.
求微分方程ylnydx+(x-lny)dy=0的通解。
证明下列函数(C1,C2为任意常数)是方程xy"+2y’-xy=ex的通解。
设对任意x>0,曲线y=f(x)上点(x,f(x))处的切线在y轴上的截距等于,求f(x)的一般表达式。
设f(x)=∫0sinrsin(t2)dt,g(x)=x3+Lz一x4,则当x→0时,f(x)是g(x)的
设曲线f(x)=xn(n为正整数)在点(1,1)处的切线与x轴相交于点(ξn,0),求
若函数f(x)在(0,+∞)上有定义,在x=1点处可导,且对于任意的正数a,b总有f(ab)=f(a)+f(b),证明:f(x)在(0,+∞)上处处可导,且f’(x)=.
求下列变限积分函数的导数:(Ⅰ)F(χ)=etdt,求F′(χ)(χ≥0);(Ⅱ)设f(χ)处处连续,又f′(0)存在,F(χ)=∫1χ[∫0tf(u)du]dt,求F〞(χ)(-∞<χ<-∞).
设f(x,y)与φ(x,y)均为可微函数,且φx(x,y)≠0。已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是()
随机试题
下列关于单根神经纤维的描述中,哪一项是错误的
A、高血压B、肌无力C、烦渴D、多尿E、满月脸皮质醇增多症特有的临床表现为()
尿道合并直肠损伤时,下列哪项正确
[2009年第004题]图B.9.3所示两座北京新建筑分别是:
非涉税鉴证服务业务报告基本程序包括()。
企业外购商品一批,已验收入库,货款已付,根据这笔业务的有关原始凭证应该填制的记账凭证是()。
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性()。
统计数据表明,相对于各种交通工具,包括人力驱动的自行车,飞机的事故率最低,因而安全系数最高,即便了解这一点,很多乘客登机后仍有不同程度的恐惧感,而这种恐惧感在他们骑自行车时是不会有的。以下哪项最合理地解释了上述现象?
结合材料回答问题:经过30多年改革开放的实践,我国社会主义市场经济体制已经初步建立,但仍然存在不少问题,主要是市场秩序不规范、生产要素市场滞后、市场规则不统一、市场竞争不充分等等。这些问题不解决好,完善的社会主义市场经济体制是难以形成的。为此,党
(90年)过点M(1,2,一1)且与直线垂直的平面方程是________
最新回复
(
0
)