首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知方程组有无穷多解,且系数矩阵A的特征值是1,﹣1,0,对应的特征向量依次是p1=(1,2a,﹣1)T,p2=(a-2,﹣1,a+1)T,p3=(a,a+3,a+2)T,求矩阵A及A100.
已知方程组有无穷多解,且系数矩阵A的特征值是1,﹣1,0,对应的特征向量依次是p1=(1,2a,﹣1)T,p2=(a-2,﹣1,a+1)T,p3=(a,a+3,a+2)T,求矩阵A及A100.
admin
2020-06-05
78
问题
已知方程组
有无穷多解,且系数矩阵A的特征值是1,﹣1,0,对应的特征向量依次是p
1
=(1,2a,﹣1)
T
,p
2
=(a-2,﹣1,a+1)
T
,p
3
=(a,a+3,a+2)
T
,求矩阵A及A
100
.
选项
答案
对方程组增广矩阵作初等行变换: [*] 当a=﹣1或a=0时,[*]=R(A)=2﹤3,即方程组均有无穷多解. 若a=﹣1,则p
1
=(1,﹣2,﹣1)
T
与p
3
=(﹣1,2,1)
T
对应分量成比例,即p
1
,p
2
,p
3
线性相关,不合题意. 若a=0时,则p
1
=(1,0,﹣1)
T
,p
2
=(﹣2,﹣1,1)
T
,p
3
=(0,3,2)
T
线性无关.根据特征值与特征向量的定义,有A(p
1
,p
2
,p
3
)=(p
1
,﹣p
2
,0).于是 A=(p
1
,﹣p
2
,0)(p
1
,p
2
,p
3
)
﹣1
[*] 因为A有3个不同的特征值,所以它与对角矩阵相似,即P
﹣1
AP=[*]=diag(1,﹣1,0),其中P=(p
1
,p
2
,p
3
),于是 A
100
[*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/VNv4777K
0
考研数学一
相关试题推荐
设A是m×s矩阵,B是s×n矩阵,则齐次线性方程组BX=0和ABX=0是同解方程组的一个充分条件是()
设A是n阶矩阵,且A的行列式|A|=0,则A().
的一个基础解系为
设事件A与B满足条件则()
设A,B,C都是n阶矩阵,满足B=E+AB,C=A+CA,则B—C为
已知α1,α2,α3,α4为3维非零列向量,则下列结论:①如果α4不能由α1,α2,α3线性表出,则α1,α2,α3线性相关;②如果α1,α2,α3线性相关,α2,α3,α4线性相关,则α1,α2,α4也线性相关;③如果r(α
设A,B为n阶对称矩阵,下列结论不正确的是().
实对称矩阵A的秩等于r,它有£个正特征值,则它的符号差为()
设α1,α2,α3,α4为四维非零列向量组,令A=(α1,α2,α3,α4),AX=0的通解为X=k(0,一1,3,0)T,则A*X=0的基础解系为().
已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解必是
随机试题
因毛细血管通透性增加而致胸腔积液的疾病是
A、隔室模型B、单室模型C、双室模型D、中央室E、周边室药物进入体内后,能迅速向各组织器官分布,以致药物能很快在血液与各组织脏器之间达到动态平衡的都属于这种模型,是()。
小儿腹泻应用2:1等张含钠液的适应证是()
改善目标控制的工作流程属于控制项目目标的(),如果对一个建设工程的项目管理进行诊断,首先应分析这一方面存在的问题。
某房地产开发公司开发一住宅项目,取得该土地使用权所支付的金额3000万元,房地产开发成本4000万元,利息支出500万元(能提供金融机构贷款证明),所在省人民政府规定,能提供金融机构贷款证明的,其房地产开发费用扣除比例为4%,该公司计算土地增值税时允许扣除
下列属于消防警察职责的是()。
[A]Thatworldisnotyetonoffer.Butasemblanceofitmightbeoneday.Senescence:,thegeneraldwindlingofprowessexperie
为了使文本框同时具有垂直和水平滚动条,应先把MultiLine属性设置为True,然后再把ScrollBars属性设置为()。
Sincethematterwasextremely______,wedealtwithitimmediately.
Room504,XiamenHotelXiamenDecember26th,2008DearSirorMadam,IarrivedinXiamenfromNanjingthismorningbyExpres
最新回复
(
0
)