首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,…,αr线性无关,又 β1=a11α1+a21α2+…+ar1αr β2=a12α1+a22α2+…+ar2αr, … βr=a1rα1+a2rα2+…+arrαr 记矩阵A=(aij)r×r,证明:β1,β2
设向量组α1,…,αr线性无关,又 β1=a11α1+a21α2+…+ar1αr β2=a12α1+a22α2+…+ar2αr, … βr=a1rα1+a2rα2+…+arrαr 记矩阵A=(aij)r×r,证明:β1,β2
admin
2016-04-11
63
问题
设向量组α
1
,…,α
r
线性无关,又
β
1
=a
11
α
1
+a
21
α
2
+…+a
r1
α
r
β
2
=a
12
α
1
+a
22
α
2
+…+a
r2
α
r
,
…
β
r
=a
1r
α
1
+a
2r
α
2
+…+a
rr
α
r
记矩阵A=(a
ij
)
r×r
,证明:β
1
,β
2
,…,β
s
线性无关的充分必要条件是A的行列式|A|≠0.
选项
答案
不妨设α
j
及β
j
均为n维列向量(j=1,2,…,r),则题设线性表示式可写成矩阵形式 [β
1
β
2
…β
r
]=[α
1
,α
2
,…,α
r
]A 或 B=PA,…(*) 其中B=[β
1
β
2
…β
s
]及P=[α
1
,α
2
,…,α
r
]均为n×r矩阵,且矩阵P的列向量组线性无关.于是可证两个齐次线性方程组Bx=0与Ax=0同解;若x满足Ax=0,两端左乘P并利用PA=B,得Bx=0;若x满足Bx=0,即PAx=0,或P(Ax)=0,因P的列向量组线性无关,得Ax=0,所以,Ax=0与Bx=0同解,→它们的基础解系所含向量个数相等,即r一r(A)=r—r(B),→r(A)=r(B).所以,向量组β
1
…β
r
线性无关→r[β
1
β
2
…β
r
]=r[*]|A|≠0.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/V8w4777K
0
考研数学一
相关试题推荐
设由方程xef(y)=ey确定y为x的函数,其中f(x)二阶可导,且f’(1)≠1,则=________.
设D={(x,y)|x2+y2≤t2,x≥0,y≥0,t≥0},f(x)是连续函数,f(0)=0,且满足,求f(x)在[0,+∞)上的表达式。
cosx/x是f(x)的一个原函数,若a≠0,则∫f(ax)dx=()
设f(x,y)为连续函数,且f(x,y)=e—x2—y2+xy2f(u,υ)dudυ,其中D:u2+υ2≤a2(a>0),则f(x,y)=________.
已知线性方程组(Ⅰ)a,b为何值时,方程组有解?(Ⅱ)方程组有解时,求出方程组的导出组的一个基础解系;(Ⅲ)方程组有解时,求出方程组的全部解.
已知曲线L的极坐标方程为r=1+cosθ(0≤θ≤π/2)求曲线L与切线T及两个坐标轴所围图形的面积
斜边长为2a的等腰直角三角形平板,铅直地沉没在水中,且斜边与水面相齐,设重力加速度为g,水密度为ρ,则该平板一侧所受的水的压力为________.
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:x>20与x≤20;
随机试题
简述一级评估的内容。
简述外科引流的目的及适应证。
2岁以下婴幼儿,为避免损伤坐骨神经,不宜选用后臀注射,宜选用臀中肌或臀小肌。()
有关穿刺检查的描述下列哪项是错误的
丁公司需要确定未来的股利政策,希望采取的股利政策能为投资者提供可预测的现金流量,减少管理层将资金转移到盈利能力差的活动的机会,并为企业提供稳定的现金流。根据以上信息可以判断,适合该公司选择的股利分配政策是()。
会议财务管理应遵循的原则是()。
患者,女性,26岁。妊娠5个月,下中切牙之间牙龈乳头处形成一肿物2个月,色紫红,易出血。最可能的诊断是()。
有如下函数模板:templateTsquare(Tx){returnx*x;}其中T是()。
Exportofhandicraftproductsisthemainstayofthecounty’seconomy.
TechniquesforGroupDiscussionLearninghowtoparticipateingroupdiscussioncouldbeoneofthemostimportantskillsyou
最新回复
(
0
)