首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间[0,1]上连续,在(0,1)内可导,且f(1)=0.证明:至少存在一点ξ∈(0,1),使(1+ξ2)(aretan ξ)f’(ξ)=一1.
设f(x)在区间[0,1]上连续,在(0,1)内可导,且f(1)=0.证明:至少存在一点ξ∈(0,1),使(1+ξ2)(aretan ξ)f’(ξ)=一1.
admin
2019-04-22
78
问题
设f(x)在区间[0,1]上连续,在(0,1)内可导,且
f(1)=0.证明:至少存在一点ξ∈(0,1),使(1+ξ
2
)(aretan ξ)f’(ξ)=一1.
选项
答案
令F(x)=e
f(x)
arctanx,x∈[0,1],则[*] 由定积分中值定理,存在[*],即F(x
0
)=F(1). 显然F(x)在[x
0
,1]上满足罗尔定理条件,故至少存在一点ξ∈(x
0
,1)[*](0,1),使F’(ξ)=0, 即 (1+ξ
2
)(arctan ξ)f’(ξ)=一1.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/V3V4777K
0
考研数学二
相关试题推荐
微分方程y’’一4y=e2x的通解为__________。
齐次线性方程组的系数矩阵为A,若存在三阶矩阵B≠0,使得AB=O,则()
设矩阵,矩阵B满足AB+B+A+2E=0,则|B+E|=()
若向量组α1,α2,α3,α4线性相关,且向量α4不可由向量组α1,α2,α3线性表示,则下列结论正确的是().
函数z=f(x,y)在点(x0,y0)可偏导是函数z=f(x,y)在点(x0,y0)连续的().
设f(χ)在[-a,a](a>0)上有四阶连续的导数,存在.(1)写出f(χ)的带拉格朗日余项的麦克劳林公式。(2)证明:存在ξ1,ξ2∈[-a,a],使得
四元非齐次线性方程组AX=b有三个解向量α1,α2,α3且r(A)=3,设α1+α2=α2+α3=,求方程组Ax一6的通解.
求极限
求极限
设函数z=z(x,y)由方程x2+y2+z2=xyf(z2),其中f可微,求的最简表达式.
随机试题
Michaeldoesn’tknowwhatto______attheuniversity;hecan’tmakeuphismindaborthisfuture.
组成药物中同时含有山萸肉、白芍的方剂是
胸大肌肌皮瓣的主要缺点是
项目总承包管理模式是()中的一种特殊的项目组织管理模式。
调解解决建设工程纠纷时,关于调解人,下列表述错误的有( )。
民歌作为民间口头文学形式之一,具有浓郁的生活气息、鲜明的地域特色和深厚的历史积淀。为推动陕北民歌艺术的发展,陕西省第三届民歌大赛于2017年2月16日至9月17日举行。本次大赛面向基层,面向群众,参赛者年龄、职业、唱法均无限制,同时鼓励创新、改编的歌曲参赛
宪法规定,居民委员会、村民委员会同基层政权的相互关系由法律规定。下列哪一项不属于基层政权的范畴?()
的平方根为().
Thebraindrainofexpertsawayfromdevelopingcountrieswillgreatlyinfluencethesecountries’developmentof____industry.
MymotherwasborninasmalltowninnorthernItaly.ShewasthreewhenherparentsimmigratedtoAmericain1926.Theylivedi
最新回复
(
0
)