首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2007年)设函数f(χ),g(χ)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明:存在ξ∈(a,b),使得f〞(ξ)=g〞(ξ).
(2007年)设函数f(χ),g(χ)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明:存在ξ∈(a,b),使得f〞(ξ)=g〞(ξ).
admin
2016-05-30
58
问题
(2007年)设函数f(χ),g(χ)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明:存在ξ∈(a,b),使得f〞(ξ)=g〞(ξ).
选项
答案
φ(χ)=f(χ)-g(χ),以下分两种情况讨论: 1)若f(χ)和g(χ)在(a,b)内的同一点处c∈(a,b)取到其最大值,则φ(c)=f(c)-g(c)=0,又φ(a)=φ(b)=0,由罗尔定理知 [*]ξ
1
∈(a,c),使φ′(ξ
1
)=0;[*]ξ
2
∈(c,B),使φ′(ξ
2
)=0 对φ′(χ)在[ξ
1
,ξ
2
]上用罗尔定理得,[*]ξ∈(ξ
1
,ξ
2
),使φ〞(ξ)=0 2)若f(χ)和g(χ)在(a,b)内不在同一点处取到其最大值,不妨设f(χ)和g(χ)分别在χ
1
和χ
2
(χ
1
<χ
2
)取到其在(a,b)内的最大值,则 φ(χ
1
)=f(χ
1
)-g(χ
1
)>0,φ(χ
2
)=f(χ
2
)-g(χ
2
)<0 由连续函数的介值定理知,[*]c∈(χ
1
,χ
2
),使φ(c)=0.以下证明与1)相同.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Uzt4777K
0
考研数学二
相关试题推荐
求方程x2y’+xy=y2满足初始条件y|x=1=1的特解.
函数y=Cx+(其中C为任意常数)对微分方程而言().
求幂级数的收敛域及和函数.
计算曲面积分I=(y2-x)dydz+(z2-y)dzdx+(x2-z)dxdy,其中∑为曲面z=2-x2-y2位于z≥0的上侧.
设某物体由曲面z=x2+y2和平面z=2x所围成,其上各点的密度ρ等于该点到平面xOz的距离的平方,试求该物体对z轴的转动惯量.
设f(x)在[0,1]上二阶可导,且f(0)=f(1)=0.证明:存在ξ[(0,1),使得f″(ξ)=[2f′(ξ)]/(1-ξ)
设二阶常系数线性微分方程y″+ay′+by=cex有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解.
设f(x)和ψ(x)在(-∞,+∞)内有定义,f(x)为连续函数,且f(x)≠0,ψ(x)有间断点,则
设f(x)为二阶可导的奇函数,当x∈(0,+∞)时,f’(x)>0,f"(x)>0,则当x∈(-∞,0)时().
(1988年)设f(χ)连续,且f(t)dt=χ,则f(7)=_______.
随机试题
A.可见光632nmB.近红外线810nmC.远紫外线193nmD.近红外线1060nmE.可见光488nm根据波长范围,Nd:YAG激光属于
最可能诊断为最重要而紧急的处理是
关于“告诉才处理”的案件与自诉案件,下列哪一选项是正确的?(2008—卷二—23,单)
某房地产开发公司与某设计单位签订的设计合同属于()。
如图,ABEDFC为多面体,平面ABED与平面ACFD垂直,点O在线段AD上,OA=1,OD=2,△OAB,△OAC,△ODE,△ODF都是正三角形.(1)证明直线BC∥EF;(2)求棱锥F—OBED的体积.
小红同学的认知风格是场独立型。据此推测,她可能更适合的学习方式是合作学习。
1978年我国居民总消费额约为()亿元。
保险利益原则的内涵及在产、寿险中的应用。
UDP报文有可能出现的现象是()。Ⅰ.丢失Ⅱ.重复Ⅲ.乱序
Americansusuallyconsiderthemselvesafriendlypeople.Theirfriendships,however,tendtobeshorterandmore【B1】______thanf
最新回复
(
0
)