首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B,C,D都是n阶矩阵,r(CA+DB)=n. (1)证明:=n: (2)设ξ1,ξ2,…,ξr与η1,η2,…,ηs分别为方程组AX=0与BX=0的基础解系,证明:ξ1,ξ2,…,ξr,η1,η2,…,ηs线性无关.
设A,B,C,D都是n阶矩阵,r(CA+DB)=n. (1)证明:=n: (2)设ξ1,ξ2,…,ξr与η1,η2,…,ηs分别为方程组AX=0与BX=0的基础解系,证明:ξ1,ξ2,…,ξr,η1,η2,…,ηs线性无关.
admin
2021-11-09
90
问题
设A,B,C,D都是n阶矩阵,r(CA+DB)=n.
(1)证明:
=n:
(2)设ξ
1
,ξ
2
,…,ξ
r
与η
1
,η
2
,…,η
s
分别为方程组AX=0与BX=0的基础解系,证明:ξ
1
,ξ
2
,…,ξ
r
,η
1
,η
2
,…,η
s
线性无关.
选项
答案
(1)因为n=r(CA+DB)=[*]=n; (2)因为[*]=n,所以方程组[*]X=0只有零解,从而方程组AX=0与BX=0没有非零的公共解,故ξ
1
,ξ
2
,…,ξ
r
与η
1
,η
2
,…,η
s
线性无关.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Ury4777K
0
考研数学二
相关试题推荐
设z=f(t2,e2t),其中f二阶连续可偏导,求.
(1)求二元函数f(χ,y)=χ2(2+y2)+ylny的极值.(2)求函数f(χ,y)=(χ2+2χ+y)ey的极值.
设直线y=kχ与曲线y=所围平面图形为D1,它们与直线χ=1围成平面图形为D2.(1)求忌,使得D1与D2分别绕χ轴旋转一周成旋转体体积V1与V2之和最小,并求最小值;(2)求(1)中条件成立时的.
过设曲线=1(0<a<4)与χ轴、y轴所围成的图形绕χ轴旋转所得立体体积为V1(a),绕y轴旋转所得立体体积为V2(a),问a为何值时,V1(a)+V2(a)最大,并求最大值.
设曲线y=a+χ-χ3,其中a<0.当χ>0时,该曲线在χ轴下方与y轴、χ轴所围成图形的面积和在χ轴上方与χ轴所围成图形的面积相等,求a.
=_______.
设f(χ)二阶可导,f(1)=0,令φ(χ)=χ2f(χ),证明:存在ξ∈(0,1),使得φ〞(ξ)=0.
设f(x)在x=1处一阶连续可导,且f’(1)=-2,则=_______.
计算二重积分.
已知y=f’(x)=arctanx2,则|x=0=________.
随机试题
某电商在全国有16个仓库,主要分布在中东部的交通枢纽城市,总库存价值3200万元,由于西部及中亚跨国业务快速增长,该电商计划三年内在西部地区增加9个仓库,该电商采用风险合并法控制总库存,假定商品价格,运费等各项因素都不变,则三年后该电商的总库存量价值将发生
简述股票发行的承销方式。
反馈控制的实质是一个按()控制的过程。
按照中国常模标准,MMPI的临床分界为T分数()。(2003年8月三级真题)
居民身份证及其他人口证件的签发和验证工作属于治安行政管理工作中的一项内容。()
[2016年第36题]近年来,越来越多的机器人被用于在战场上执行侦察、运输任务,甚至将来冲锋陷阵的都不再是人,而是形形色色的机器人。人类战争正在经历自核武器诞生以来最深刻的革命。有专家据此分析指出.机器人战争技术的出现可以使人类远离危险,更安全、更有效的实
西南联大,是20世纪30年代抗战时期的特殊产物,却成了中国教育史的一个神话,以下学校不是当初组成部分的是()
2008年12月31日,胡锦涛在纪念《告台湾同胞书》发表30周年座谈会上发表重要讲话,全面系统地阐述了两岸关系和平发展的思想,科学回答了为什么要推动两岸关系和平发展、怎样推动两岸关系和平发展的重大问题,明确提出了新世纪新阶段对台关系的六点意见。请
在考生文件夹下的XIN文件夹中分别建立名为HUA的文件夹和一个名为ABC.DBF的文件。
Ineverycultivatedlanguagetherearetwogreatclassesofwordswhich,takentogether,comprisethewholevocabulary.First,t
最新回复
(
0
)