首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
过设曲线=1(0<a<4)与χ轴、y轴所围成的图形绕χ轴旋转所得立体体积为V1(a),绕y轴旋转所得立体体积为V2(a),问a为何值时,V1(a)+V2(a)最大,并求最大值.
过设曲线=1(0<a<4)与χ轴、y轴所围成的图形绕χ轴旋转所得立体体积为V1(a),绕y轴旋转所得立体体积为V2(a),问a为何值时,V1(a)+V2(a)最大,并求最大值.
admin
2019-08-23
81
问题
过设曲线
=1(0<a<4)与χ轴、y轴所围成的图形绕χ轴旋转所得立体体积为V
1
(a),绕y轴旋转所得立体体积为V
2
(a),问a为何值时,V
1
(a)+V
2
(a)最大,并求最大值.
选项
答案
曲线与χ轴和y轴的交点坐标分别为(a,0),(0,b),其中b=4-a. 曲线可化为y=[*], 对任意的[χ,χ+dχ][*][0,a],dV
2
=2πχ.ydχ=2πχ.[*]dχ 于是V
2
=[*], 根据对称性,有V
1
=[*]ab
2
. 于是V(a)=V
1
(a)+V
2
(a)=[*]a(4-a). 令V′(a)=[*](4-2a)=0[*]a=2,又V〞(2)<0,所以a=2时,两体积之和最大,且最大值为V(2)=[*]π.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/NIA4777K
0
考研数学二
相关试题推荐
设函数f(x)满足关系式f’’(x)+[f’(x)]2=x,且f’(0)=0,则()
已知A是四阶矩阵,A*是A的伴随矩阵,若A*的特征值是1,一1,2,4,那么不可逆矩阵是()
微分方程满足初始条件y(1)=1的特解是y=______。
设区域D={(x,y)|x2+y2≤4,x≥0,y≥0},f(x)为D上的正值连续函数,a,b为常数,则=()
已知方程组有解,证明方程组无解。[img][/img]
曲线xy=1在点D(1,1)处的曲率圆方程是______。
设y=f(x)是区间[0,1]上的任一非负连续函数。试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积等于在区间[x0,1]上以y=f(x)为曲边的梯形面积;
设位于第一象限的曲线y=f(x)过点其上任一点P(x,y)处的法线与y轴的交点为Q,且线段PQ被x轴平分。求曲线y=f(x)的方程。
求曲线x3一xy+y3=1(x≥0,y≥0)上的点到坐标原点的最长距离与最短距离。
设区域D由曲线y=sinx,,y=1围成,则(x5一1)dxdy=()[img][/img]
随机试题
瘀;石;虫;痰等阻塞所致之“气闭”,最突出的表现是
关于药品保管的温度A、2℃B、2~10℃C、不超过20℃D、10~30℃E、遮光并且温度不超过20℃左氧氟沙星片及注射剂的适宜保管温度是
阑尾炎患者术后早期下床活动的主要目的是()
会计人员所在单位应当负责组织和督促会计人员参加继续教育。()
配套效应是指因为追求配套而导致不经济及形式化的现象。朋友送给法国哲学家狄德罗一件质地优良、图案高雅的睡袍,狄德罗觉得家具和摆设的风格和睡袍不配套,于是他把家具和摆设全部更新了。经济学家把发生在狄德罗身上的这一现象称作“配套效应”,或者“狄德罗效应”。 根
一、注意事项1.申论考试是对考生阅读理解能力、综合分析能力、提出和解决问题能力、文字表达能力的测试。请考生仔细阅读给定资料,按要求作答。2.本试题由“给定资料”和“作答要求”两部分构成。二、给定资料1.自2006年起,桂剧、黔剧、花灯戏等一
给定资料1.1996年岁末,朱镕基同志在北京看话剧《商鞅》。据报道,他为剧情所动,凄然泪下。商鞅以惊人的勇气掀起改革之潮流,终为顽固派羁绊,车裂而死。此事虽已过去2000多年,然而以古衡今,焉能不令人慨叹。面对商鞅,以强人著称的朱镕基都
Theywillgetthejobdonein______time.
A—mouseI—draganddropB—centralprocessingunitJ—electroniccommerceC—CADK—floppydiskD—dataprocessingL—homepageE—desk
WhatisrequiredinmanydifferentsituationsinAmericanculture?Anexpressionof______.
最新回复
(
0
)