首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数y=y(x)在(-∞,+∞)内具有二阶导数,且y’(x)≠0,x=x(y)是y=y(x)的反函数。 (Ⅰ)试将x=x(y)所满足的微分方程变换为y=y(x)满足的微分方程; (Ⅱ)求变换后的微分方程满足初始条件y(0)=0,的解。
设函数y=y(x)在(-∞,+∞)内具有二阶导数,且y’(x)≠0,x=x(y)是y=y(x)的反函数。 (Ⅰ)试将x=x(y)所满足的微分方程变换为y=y(x)满足的微分方程; (Ⅱ)求变换后的微分方程满足初始条件y(0)=0,的解。
admin
2019-01-15
102
问题
设函数y=y(x)在(-∞,+∞)内具有二阶导数,且y
’
(x)≠0,x=x(y)是y=y(x)的反函数。
(Ⅰ)试将x=x(y)所满足的微分方程
变换为y=y(x)满足的微分方程;
(Ⅱ)求变换后的微分方程满足初始条件y(0)=0,
的解。
选项
答案
(Ⅰ)由反函数求导法则,[*],则 [*] 将以上两式代入所给微分方程得y
’’
-y=sinx。 (Ⅱ)由(Ⅰ)中结果,则对应齐次方程的特征方程为λ
2
-1=0,特征根为λ=±1。 由于i不是特征方程的根,故设非齐次待定特解为y
*
=Acosx+Bsinx,并将y
*
,(y
*
)
’
及(y
*
)
’’
代入y
’’
-y=sinx,得A=0,[*]。 则非齐次方程通解为[*]。 又由y(0)=0,[*]可得,C
1
,C
2
=-1。 故所求特解为[*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/ToP4777K
0
考研数学三
相关试题推荐
(89年)已知X=AX+B,其中求矩阵X.
(10年)设函数f(χ),g(χ)具有二阶导数,且g〞(χ)<0.若g(χ0)=a是g(χ)的极值,则f(g(χ))在χ0取极大值的一个充分条件是【】
(04年)设A,B为两个随机事件,且P(A)=,P(B|A)=,P(A|B)=,令求:(Ⅰ)二维随机变量(X,Y)的概率分布;(Ⅱ)X与Y的相关系数ρ(X,Y);(Ⅲ)X=X2+Y2的概率分布.
(15年)若函数z=z(χ,y)由方程eχ+2y+3z+χyz=1确定,则dz|(0,0)=_______.
(02年)设幂级数anχn与bnχn的收敛半径分别为,则幂级数的收敛半径为【】
(94年)设有线性方程组(1)证明:若a1,a2,a3,a4两两不相等,则此线性方程组无解;(2)设a1=a3=k,a2=a4=-k(k≠0),且已知β1=(-1,1,1)T,β2=(1,1,-1)T是该方程组的两个解,写出此方程组的通
差分方程yt+1-yt=t2t的通解为___________.
设y=y(x)可导,y(0)=2,令△y=y(x-△x)-y(x),且△y=△x+α,其中α是当△x→0时的无穷小量,则y(x)=______.
设y=y(x)可导,y(0)=2,令△y=y(x+△x)-y(x),且,其中α是当△x→0时的无穷小量,则y(x)=_____________________。
已知f(x)是连续函数,且在x=0的某邻域内满足-3f(1+sinx)=6x+α(x),其中α(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,则y=f(x)在点(1,f(1))处的切线方程为__________。
随机试题
Britishscientistsarepreparingtolaunchtrialsofaradicalnewwaytofightcancer,whichkillstumoursbyinfectingthemwi
禁止内幕交易的主要措施有( )。
下列属于银行附属资本的是()。
要约是指()。
下列不属于肥胖症的表现的是()。
水杯:透明:光线
张载说:“有象斯有对,对必反其为。有反斯有仇,仇必和而解。”这告诉我们()。
某银行保险柜被橇,巨额现金和证券失窃。警察局经过侦破,拘捕了三名重大的嫌疑犯:施辛格,赖普顿和安杰士。通过审讯,查明了以下的事实:(1)保险柜是用专门的作案工具撬开的,使用这种工具必须受过专门的训练。(2)只有施辛格作案,安杰士才作案。
Couldyou______reasonsandexamplesforyouranswer7
ASuccessStoryAt19,BenWayisalreadyamillionaire,andoneofagrowingnumberofteenagerswhohave【C1】______theirfo
最新回复
(
0
)