首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在[a,b]上连续,且f(χ)>0,证明:存在ξ∈(a,b),使得∫aξf(χ)dχ=∫ξbf(χ)dχ.
设f(χ)在[a,b]上连续,且f(χ)>0,证明:存在ξ∈(a,b),使得∫aξf(χ)dχ=∫ξbf(χ)dχ.
admin
2020-03-16
51
问题
设f(χ)在[a,b]上连续,且f(χ)>0,证明:存在ξ∈(a,b),使得∫
a
ξ
f(χ)dχ=∫
ξ
b
f(χ)dχ.
选项
答案
令g(χ)=∫
a
χ
f(t)dt-∫
χ
b
f(t)dt, 因为f(χ)在[a,b]上连续,且f(χ)>0, 所以g(a)=-∫
a
b
f(t)dt<0,g(b)=∫
a
b
f(t)dt>0, 由零点定理,存在ξ∈(a,b),使得g(ξ)=0,即∫
a
ξ
f(χ)dχ=∫
ξ
b
f(χ)dχ.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/To84777K
0
考研数学二
相关试题推荐
假设:①函数y=f(x)(0≤x≤+∞)满足条件f(0)=0和0≤f(x)≤ex一1;②平行于y轴的动直线MN与曲线y=f(x)和y=ex一1分别相交于点P1和P2;③曲线y=f(x),直线MN与x轴所围成的封闭图形的面积S恒等于线段P1P2的长度。
设f(x)在区间[a,b]上连续,在(a,b)内可导,且f(a)=f(b),f(x)不恒为常数,证明:在(a,b)内至少存在一点ξ,使得f’(ξ)>0.
设二次f(x1,x2,x3)=xAx在正交变换x=Qy下的标准形为y1+y2,且Q的第三列为求A;
求y=f(χ)=的渐近线.
设二元函数计算二重积分,其中D={(x,y)||x|+|y|≤2}。[img][/img]
设α1,α2,…,αs,β都是n维向量,证明:r(α1,α2,…,αS,β)=
在xOy坐标平面上,连续曲线L过点M(1,0),其上任意点P(x,y)(x≠0)处的切线斜率与直线OP的斜率之差等于ax(常数a>0).(1)求L的方程;(2)当L与直线y=ax所围成平面图形的面积为时,确定a的值.
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。求A的特征值与特征向量;
设在一段时间内进入某商店的顾客人数X服从参数为λ的泊松分布,每个顾客购买某件物品的概率为p(0<p<1),并且每个顾客购买该物品是相互独立的,以Y表示购买这种物品的顾客人数,求Y的概率分布.
设总体X和Y相互独立,且都服从N(μ,σ2),分别为总体X与Y的样本容量为n的样本均值,则当n固定时,概率P{||>σ}的值随σ的增大而()
随机试题
显而易见,要到科技产品出现了问题才解决的话,就已经迟了。如果科技可以制造出完全无法进入的装置,怎么去破解恐怖分子的阴谋?因此,科技的第一个禁忌就是,不能制造完全无法进入的装置,不能造出人类无法控制的智能技术。但是,这一点已经有可能人们说了不算,谁也无法预测
市场营销管理人员是如何来寻找和发现市场机会的?
小型客车行驶在平坦的高速公路上,突然有颠簸感觉时,应迅速降低车速,防止爆胎。
肛管()
欲提高硅酸盐水泥早期强度,应增加( )的含量。
某承包商承接了相邻两栋高层住宅楼的施工,这两栋楼之间由于资源(人力、材料、机械设备和资金等)调配需要而规定的先后顺序关系称为()。
韩某从2015年年初开始,每年年初存入银行2万元,存款年利率为4%,按年复利计息,共计存款5次,在2019年年末可以取出()万元。[注:已知(F/A,4%,5)=5.4163,(F/A,4%,6)=6.6330]
(1999年)设∑为椭球面的上半部分,点P(x,y,z)∈∑,∏为∑在点P处的切平面,ρ(x,y,z)为点O(0,0,0)到平面∏的距离,求
设总体X的概率分布为θ(0<θ<)是未知参数.用样本值3,1,3,0,3,1,2,3求θ的矩估计值和最大似然估计值.
下列关于查询的说法中,不正确的是
最新回复
(
0
)