首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关, 且α1+2α2+…+(n-1)αn-1=0,b=α1+α2,…+αn. 证明方程组AX=b有无穷多个解;
设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关, 且α1+2α2+…+(n-1)αn-1=0,b=α1+α2,…+αn. 证明方程组AX=b有无穷多个解;
admin
2019-04-22
71
问题
设n阶矩阵A=(α
1
,α
2
,…,α
n
)的前n-1个列向量线性相关,后n-1个列向量线性无关,
且α
1
+2α
2
+…+(n-1)α
n-1
=0,b=α
1
+α
2
,…+α
n
.
证明方程组AX=b有无穷多个解;
选项
答案
因为r(A)=n-1,又b=α
1
+α
2
+…+α
n
,所以r([*])=n-1,即r(A)=r([*])=n-1
解析
转载请注明原文地址:https://www.kaotiyun.com/show/TkV4777K
0
考研数学二
相关试题推荐
设A为n阶实对称矩阵,下列结论不正确的是().
已知四维向量组α1,α2,α3,α4线性无关,且向量β1=α1+α3+α4,β2=α2一α4,β3=α3+α4,β4=α2+α3,β5=2α1+α2+α3.则r(β1,β2,β3,β4,β5)=()
设A,B为n阶矩阵,则下列结论正确的是().
设λ=2是非奇异矩阵A的一个特征值,则矩阵有一特征值等于()
设n元齐次线性方程组Ax=0的系数矩阵A的秩为r,则Ax=0有非零解的充分必要条件是()
设A为n阶矩阵,AT是A的转置矩阵,对于线性方程组(I)Ax=0和(Ⅱ)ATAx=0,必有()
设fn(χ)=χ+χ2+…+χn(n≥2).(1)证明方程fn(χ)=1有唯一的正根χn;(2)求χn.
设f(χ)在[0,1]上二阶可导,且f(0)=f′(0)=f(1)=f′(1)=0.证明:方程f〞(χ)-f(χ)=0在(0,1)内有根.
随机试题
亚硫酸盐能破坏肉、鱼等动物性食品中的()。
甲醛、乙醛、丙酮三种化合物可用()一步区分开。
刺激迷走神经可用于治疗
女,20岁。上前牙松动3年,检查见上切牙松动Ⅱ°扇形移位,口腔卫生较好,初步印象为局限性青少年牙周炎。若已确诊,其可能还具有的特征如下,但不包括
满山红的质量控制成分是()
长上公司与艺海公司在履行合同过程中发生了纠纷。长上公司按照仲裁条款向选定的石家庄市仲裁委员会提交了仲裁申请。下列关于该案仲裁庭的组成的表述哪个是错误的?
下列关于简易程序的说法中,错误的是()。
危机发生时,如果公司能够采取有效的措施来消除不利影响,那么反而能够增加公司的声誉。一个非常好的声誉,可能仅仅因为一个事件,转眼间就被破坏殆尽;而一个不好的声誉,往往需要很长时间的努力才能消除它。如果以上陈述为真,则最能支持以下哪项陈述?()
马克思认为资本主义制度下的工资掩盖了资本主义剥削的实质,这是因为工资
设线性方程组(1)Ax=0的一个基础解系为α1=(1,1,1,0,2)T,α2=(1,1,0,1,1)T,α3=(1,0,1,1,2)T。线性方程组(2)Bx=0的一个基础解系为β1=(1,1,一1,一1,1)T,β2=(1,一1,1,一1,2)T,β3=
最新回复
(
0
)