首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1998年试题,九)设y=f(x)是区间[0,1]上的任一非负连续函数. 试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的曲边梯形面积;
(1998年试题,九)设y=f(x)是区间[0,1]上的任一非负连续函数. 试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的曲边梯形面积;
admin
2013-12-27
90
问题
(1998年试题,九)设y=f(x)是区间[0,1]上的任一非负连续函数.
试证存在x
0
∈(0,1),使得在区间[0,x
0
]上以f(x
0
)为高的矩形面积,等于在区间[x
0
,1]上以y=f(x)为曲边的曲边梯形面积;
选项
答案
(1)根据题意,假如存在满足条件的x
0
∈(0,1),即有[*]显然此式等价于要求函数[*]在(0,1)区间内有零点,循此思路,构造辅助函数[*]及F
2
’
(x)=F
1
(x)则可验证可取[*]又F
2
(0)=F
2
(1)=0,则由罗尔定理知,存在x
0
∈(0,1),使F
2
’
(x
0
)=F
1
(x
0
)=0,则结论(1)证毕.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/TR54777K
0
考研数学一
相关试题推荐
设αi=(αi1,αi2,…,αin)T(i=1,2,…,r,r<n)是n维实向量,且α1,α2,…,αr线性无关,已知β=(b1,b2,…,bn)T是线性方程组的非零解向量,试判断向量组α1,α2,…,αr,β的线性相关性.
已知向量组A:α1=(0,1,2,3)T,α2=(3,0,1,2)T,α3=(2,3,0,1)T;B:β1=(2,1,1,2)T,β2=(0,一2,1,1)T,β3=(4,4,1,3)T.试证B组能由A组线性表示,但A组不能由B组线性表示.
已知点A与B的直角坐标分别为(1,0,0)与(0,1,1),线段AB绕z轴旋转一周所成的旋转曲面为S,求由S及平面z=0,z=1所围成的立体体积.
f(x)=的可去间断点的个数为().
设f0(x)是[0,+∞)上的连续的单调增加函数,函数f1(x)=.补充定义f1(x)在x=0的值,使得补充定义后的函数(仍记为f1(x))在[0,+∞)上连续;
若y(x)=∫0xarctan(u-1)2du,则y(x)在区间[0,1]上的平均值为________.
设平面薄片所占的区域D由抛物线y=x2及直线y=x所围成,它在(x,y)处的面密度ρ(x,y)=x2y,求此薄片的重心.
位于上半平面的上凹曲线y=y(x)过点(0,2),在该点处的切线水平,曲线上任一点(x,y)处的曲率与及1+y’2之积成反比,比例系数为,求y=y(x).
上的平均值为________.
(2009年试题,17)椭球面S1是椭圆绕x轴旋转而成,圆锥面S2是过点(4,0)且与椭圆相切的直线绕轴旋转而成.求S1及S2的方程;
随机试题
心脏骤停的诊断标准是()
()是推动经济全球化的市场因素。
Theatmosphereisalltheairsurroundingtheearth.Withoutit,wewouldbeforcedtoseekshelterfromthesun,astherewould
下列符合高血压的描述是
老年(≥65岁)帕金森病患者,首选药物为()。
以下有关定额的作甩说法正确的是( )。
根据以下资料,回答下列问题。2012年年末,合肥市规模以上工业企业2087户,全年实现工业增加值1653.54亿元,比上年增长17.4%。其中,轻工业增加值653.28亿元,增长16.5%;重工业增加值1000.26亿元,增长18%。战略性新兴产业完成产
在发生全球危机那样的极为紧急的时刻,投机活动猖獗,利率急剧上升,一切都变化不定,保护好自己的财产是至关重要的。管理和经济领域的专家认为:储蓄仍然是最安全的避难所,尽管收益非常低,但是把钱存起来实际上不会遇到风险。即使存款的银行破产,政府也保证归还储户一定数
ReserveBankshaveexpressedaninterestinusingnon-employeeexpertsorconsultantsonbanksupervisionmattersforanumbero
WhichofthefollowingisproperdescriptionformembersofCongress?attitudetowardsBushadministration?plans?
最新回复
(
0
)