首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3阶实对称矩阵,A的每行元素的和为5,则二次型f(x1,x2,x3)=xTAx在x0=(1,1,1)T的值f(1,1,1)=x0TAx0=________。
设A是3阶实对称矩阵,A的每行元素的和为5,则二次型f(x1,x2,x3)=xTAx在x0=(1,1,1)T的值f(1,1,1)=x0TAx0=________。
admin
2019-03-23
99
问题
设A是3阶实对称矩阵,A的每行元素的和为5,则二次型f(x
1
,x
2
,x
3
)=x
T
Ax在x
0
=(1,1,1)
T
的值f(1,1,1)=x
0
T
Ax
0
=________。
选项
答案
15
解析
因为A是3阶实对称矩阵,A的每行元素的和为5,故有
因为x
0
=(1,1,1)
T
,将上式两边左乘x
0
T
,得
f(1,1,1)=x
0
T
Ax
0
=
=15。
转载请注明原文地址:https://www.kaotiyun.com/show/THV4777K
0
考研数学二
相关试题推荐
设A=(α1,α2,α3),B=(β1,β2,β3)都是3阶矩阵.规定3阶矩阵证明C可逆的充分必要条件是A,B都可逆.
二次型f(x1,x2,x3)=XTAX在正交变换X=QY下化为y12+y22,Q的第3列为.①求A.②证明A+E是正定矩阵.
设A为n阶正交矩阵,α和β都是n维实向量,证明:(1)内积(α,β)=(Aα,Aβ).(2)长度‖Aα‖=‖α‖.
设A=,(1)证明当n>1时An=An-2+A2-E.(2)求An.
设n阶矩阵A满足A4+2A3-5A2+2A+5E=0.证明A-2E可逆.
设3阶矩阵A的各行元素之和都为2,又α1=(1,2,2)T和α2=(0,2,1)T分别是(A-E)X=0的(A+E)X=0的解.(1)求A的特征值与特征向量.(2)求矩阵A.
设A是m阶正定矩阵,B是m×n实矩阵,证明:BTAB正定r(B)=n.
高度为h(t)(t为时间)的雪堆在融化过程中,其侧面满足,已知体积减少的速度与侧面积所成比例系数为0.9,问高度为130的雪堆全部融化需要多少时间(其中长度单位是cm,时间单位为h)?
某试验性生产线每年一月份进行熟练工与非熟练工的人数统计,然后将熟练工支援其他生产部门,其缺额由新招收的非熟练工补齐。新、老非熟练工经过培训及实践至年终考核有成为熟练工。设第n年一月份统计的熟练工和非熟练工所占百分比分别为xn和yn,记成αn=求αn+1
随机试题
微处理器是将______________和高速内部缓存集成在一起的超大规模集成电路芯片,是计算机中最重要的核心部件。
试述支气管扩张手术的禁忌证。
新生儿病室的适宜温度是
女,32岁,要求美齿治疗。全口牙面呈现灰黄色,分布均匀,无带状着色,牙体坚硬光滑。如选择漂白治疗,目前最常用的漂白剂为
下列哪一案件可以适用简易程序:()
A区基层人民法院民一庭在审理一个民事案件中,碰到一系列的难题,关于这些问题的解决,形成了许多方案,符合法律规定的有:()
关于具体行政行为的效力及其处理,以下说法正确的是:()
土地的经济供给,是指在土地的自然供给范围内,对土地进行了开发、规划和整治,以满足人类不同需求的土地供给。()
新中国成立60多年来,人民民主专政的国家政权不断巩固,人民代表大会制度、中国共产党领导的多党合作和政治协商制度、民族区域自治制度和基层群众自治制度不断完善。上述制度()。①是由我国的国家性质决定的政权组织形式②是我国人民当家作主和享有广泛民主权
A、Childrendon’tgetenougheducationinsafety.B、Childrenarekeenondangerousgames.C、Theplaygroundsareinpoorcondition
最新回复
(
0
)