首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知非齐次线性方程组 当方程组(Ⅱ)中的参数m,n,t为何值时,方程组(Ⅰ)、(Ⅱ)同解.
已知非齐次线性方程组 当方程组(Ⅱ)中的参数m,n,t为何值时,方程组(Ⅰ)、(Ⅱ)同解.
admin
2017-06-14
44
问题
已知非齐次线性方程组
当方程组(Ⅱ)中的参数m,n,t为何值时,方程组(Ⅰ)、(Ⅱ)同解.
选项
答案
方程组(Ⅱ)中的参数m,n,t为何值时,方程组(Ⅰ)、(Ⅱ)同解,即(Ⅰ)、(Ⅱ)同解 时,(Ⅱ中参数应为何值. (Ⅰ)、(Ⅱ)同解=>(Ⅰ)的通解也是(Ⅱ)的通解.将(Ⅰ)的通解代入(Ⅱ)的方程,得 [*] 得m=2,n=4,t=6. 当m=2,n=4,t=6时,方程组(Ⅱ)的增广矩阵是 [*] 因r(B)=r(B|c)=3,故知(Ⅰ)的通解是(Ⅱ)的解,且是(Ⅱ)的通解,也是(Ⅰ)的通 解,故当m=2,n=4,t=6时,方程组(Ⅰ)、(Ⅱ)同解.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Spu4777K
0
考研数学一
相关试题推荐
设A,B为满足AB=0的任意两个非零矩阵,则必有
设n元线性方程组Ax=b,其中当a为何值时,该方程组有无穷多解,并求通解.
已知非齐次线性方程组有3个线性无关的解.求a,b的值及方稗组的通解.
设A=(α1,α2,α3,α4)是4阶矩阵,A*为A的伴随矩阵.若(1,0,1,0)T是方程组Ax=0的一一个基础解系,则A*x=0的基础解系可为
设向量α=(α1,α2,…,αn)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT.矩阵A的特征值和特征向量.
已知向量组(I):α1,α2,α3;(II):α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α5.如果各向量组的秩分别为r(I)=r(Ⅱ)=3,r(Ⅲ)=4.证明向量组α1,α2,α3,α5-α4的秩为4.
设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α3满足Aα3=α2+α3.证明α1,α2,α3线性无关;
设奇函数f(x)在[-1,1]上具有2个阶导数,且f(x)=1。证明:存在η∈(-1,1),使得f"(η)+f’(η)=1.
设数列{an}满足条件:a0=3,a1=1,an-2-n(n-1)an=0(n≥2),S(x)是幂级数的和函数。证明:S"(X)-S(X)=0;
如果0<β<α<π/2,证明
随机试题
公债发行市场
某很长的岩质边坡的断面形状如图1.3—18所示。岩体受一组走向与边坡平行的节理面所控制,节理面的内摩擦角为35°,黏聚力为70kPa,岩体重度为23kN/m3。请验算边坡沿节理面的抗滑稳定系数最接近下列哪个选项?
建筑材料的采购费、仓储费、工地保管费和仓储损耗费,属于建筑安装工程的()。
下述关于出境货物的出运期限及有关检验检疫证单的有效期表述正确的是()。
绩效薪酬属于基本薪酬。()
A上市公司在2012年度利润分配及资本公积转增股本实施公告中披露的分配方案主要信息:每10股送2股派发现金红利0.5元(含税,送股和现金红利均按10%代扣代缴个人所得税),转增4股。股权登记日:2013年3月1日(注:该日收盘价为49元);除权(除息)日:
小麦的粒色受不连锁的两对基因R1和r1、R2和r2控制。R1和R2决定红色,r1和r2决定白色,R对r不完全显性,并有累加效应,所以麦粒的颜色随R的增加而逐渐加深。将红粒(R1R1R2R2)与白粒(r1r1r2r2)杂交得F1,F1自交得F2,则F2的表现
被监视居住与取保候审的犯罪嫌疑人、被告人应当遵守的规定相同。()
A、 B、 C、 D、 D
Whatdoyousaytodinewithastrangerwhomighthavecommittedmurderhoursago?
最新回复
(
0
)