首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B为满足AB=0的任意两个非零矩阵,则必有
设A,B为满足AB=0的任意两个非零矩阵,则必有
admin
2013-04-04
74
问题
设A,B为满足AB=0的任意两个非零矩阵,则必有
选项
A、A的列向量组线性相关,B的行向量组线性相关.
B、A的列向量组线性相关,B的列向量组线性相关.
C、A的行向量组线性相关,B的行向量组线性相关.
D、A的行向量组线性相关,B的列向量组线性相关.
答案
A
解析
设A是m×n曰是n×s矩阵,且AB=0,那么r(A)+r(B)≤n.
由于A,B均非0,故0
由r(A)=A的列秩,知A的列向量组线性相关.
由r(B)=B的行秩,知B的行向量组线性相关.故应选(A).
若设A=(1,0),B=(0,1)
T
。,显然AB=0.但矩阵A的列向量组线性相关,行向量组
线性无关;矩阵B的行向量组线性相关,列向量组线性无关.由此就可断言选项(A)正确.
转载请注明原文地址:https://www.kaotiyun.com/show/rH54777K
0
考研数学一
相关试题推荐
(2009年)(Ⅰ)证明拉格朗日中值定理:若函数f(χ)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f′(ξ)(b-a).(Ⅱ)证明:若函数f(χ)在χ=0处连续,在(0,δ)(δ>0)内可导,且f′(χ
设α1,α2,α3均为三维向量,则对任意常数k,l,向量组α1+kα3,α2+lα3线性无关是向量组α1,α2,α3线性无关的()
(04年)设函数f(x)连续。且f’(0)>0,则存在δ>0,使得
(96年)设函数f(x)在区间(一δ,δ)内有定义,若当x∈(一δ,δ)时,恒有|f(x)|≤x2,则x=0必是f(x)的
[2010年]设向量组(Ⅰ):α1,α2,…,αr可由向量组(Ⅱ):β1,β2,…,βs线性表示.下列命题正确的是().
设二次型f(x1,x2,x3)=a(x12,x22,x32)+2x1x2+2x2x3+2x1x3的正、负惯性指数分别为1,2,则
给定椭球体在第一象限的部分.在何处的切平面与三个坐标面围成的空间区域的体积最小.
设向量组α1,α2,α3是Ax=b的3个解向量,且r(A)=1,α1+α2=(1,2,3)T,α2+α3=(0,-1,1)T,α3+α1=(1,0,-1)T,求Ax=b的通解.
当x→0时,(-1)ln(1+x2)是比xkarctanx高阶的无穷小,而xkarctanx是比(1-)∫0xdt高阶的无穷小,则k的取值范围是()。
袋中有一个红球,两个黑球,三个白球,现在放回的从袋中取两次,每次取一个,若以X、Y、Z分别表示两次取球所取得的红、黑与白球的个数.求二维随机变量(X,Y)的概率分布.
随机试题
阳离子聚合物钻井液在防止起钻遇卡、下钻遇阻及防止钻头泥包等方面具有较好的效果。()
输血后非溶血性发热反应最常见的原因是:()
根据《刑事诉讼法》的规定,辩护律师收集到的下列哪一证据应及时告知公安机关、检察院?(2016/2/27)
对于重要的会计电算化档案应准备双份,存放在两个不同的地点,最好在两个不同的建筑内。()
风险管理文化的精神核心,风险文化中最为重要和最高层次的因素是()。
残疾人社会工作主要是从增强和恢复残障者生理器官功能的角度开展的服务,它包括()。
一个大型信息系统必须有一个总体规划,这主要是因为,()。
请在【答题】菜单下选择【进入考生文件夹】命令,并按照题目要求完成下面的操作。注意:以下的文件必须保存在考生文件夹下。文涵是大地公司的销售部助理,负责对全公司的销售情况进行统计分析,并将结果提交给销售部经理。年底,她根据各门店提交的销售报表进行统计分析。
From:dkarepair@dgk.comTo:TrevorLennonSubject:DigitalcamerarepairDearMr.Trevor,Wegotyourdigitalcameraandfoundt
Whatwasthefirstlanguage?Howdidlanguagebegin,andwhereandwhen?Untilrecently,asensiblelinguistwouldlikelyto【S1】
最新回复
(
0
)