首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)﹦x12﹢x22﹢x32-2x1x2-2x1x3﹢2ax2x3通过正交变换化为标准形f﹦2y12﹢2y22﹢by32。 (I)求常数a,b及所用的正交变换矩阵Q; (Ⅱ)求f在xTx﹦3下的最大值。
设二次型f(x1,x2,x3)﹦x12﹢x22﹢x32-2x1x2-2x1x3﹢2ax2x3通过正交变换化为标准形f﹦2y12﹢2y22﹢by32。 (I)求常数a,b及所用的正交变换矩阵Q; (Ⅱ)求f在xTx﹦3下的最大值。
admin
2022-10-13
46
问题
设二次型f(x
1
,x
2
,x
3
)﹦x
1
2
﹢x
2
2
﹢x
3
2
-2x
1
x
2
-2x
1
x
3
﹢2ax
2
x
3
通过正交变换化为标准形f﹦2y
1
2
﹢2y
2
2
﹢by
3
2
。
(I)求常数a,b及所用的正交变换矩阵Q;
(Ⅱ)求f在x
T
x﹦3下的最大值。
选项
答案
(I)由题意得,二次型矩阵及其对应的标准形矩阵分别为 [*] 由矩阵B可知,矩阵A的特征值为2,2,b。矩阵A的迹tr(A)﹦3﹦2﹢2﹢6,所以b﹦-1。 由于2是矩阵A的二重特征值,而实对称矩阵A必可相似对角化,所以矩阵A的对应于特征值2的线性无关的特征向量有2个。于是矩阵A-2E的秩为1,而 [*] 所以a﹦-1。 由(A-λE)x﹦0得,特征值为λ
1
﹦λ
2
﹦2,λ
3
﹦-1,对应的特征向量分别为 α
1
﹦(1,0,-1)
T
,α
2
﹦(0,1,-1)
T
,α
3
﹦(1,1,1)
T
, 由于实对称矩阵属于不同特征值的特征向量正交,所以只需将α
1
,α
2
正交化得 [*] 再将β
1
,β
2
,α
3
单位化得 [*] 则正交变换矩阵为[*] (Ⅱ)二次型f﹦x
T
Ax在正交变换X﹦Qy,下的标准形为f﹦2y
1
2
﹢2y
2
2
-y
3
2
。条件x
T
x﹦3等价于y
T
Q
2
Qy﹦y
1
2
﹢y
2
2
﹢y
3
2
﹦3;此时f﹦2y
1
2
﹢2y
2
2
-y
3
2
﹦6-3y
3
2
的最大值为6,所以f在x
T
x﹦3的条件下的最大值为6。 本题考查二次型的正交变换。考生可由题干给出的标准形得出二次型矩阵的特征值,进而由二次型矩阵及其对应的标准形矩阵的性质得到常数a,b的值。考生可由矩阵的特征方程解得矩阵的特征向量,对特征向量正交化、单位化,即可求出所用的正交变换矩阵。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Sne4777K
0
考研数学一
相关试题推荐
设A,B均为2阶矩阵,A*,B*分别为A,B的伴随矩阵,若|A|=2,|B|=3,则分块矩阵的伴随矩阵为().
设n阶矩阵A非奇异(n≥2),A*是其伴随矩阵,则下列选项中,正确的是().
设A=,B=,且|A|=4,则|B|=().
设A和B都是n阶矩阵,满足AB=0,则必有().
已知A=,判断A能否对角化.若能对角化,求可逆矩阵P使得P﹣1AP为对角矩阵.
设矩阵A=,其行列式|A|=﹣1,又A的伴随矩阵A*有一个特征值λ0,A*的属于λ0的一个特征向量为p=(﹣1,﹣1,1)T,求a,b,c和λ0的值.
设n阶矩阵A,B满足R(A)+R(B)﹤n,证明:A与B有公共的特征值,有公共的特征向量.
设3阶实对称矩阵A的秩为2,又6是它的二重特征值,向量(1,1,0)T和(2,1,1)T和(﹣1,2,﹣3)T都是6的特征向量.(1)求A的另一个特征值及相应的特征向量;(2)求A.
已知3阶实矩阵A=的一个特征向量为p1=,求参数a,b以及A的所有特征值和特征向量.
设X,Y是两个相互独立且服从正态分布N(0,1)的随机变量,则随机变量Z=max(X,Y)的数学期望E(Z)=_______
随机试题
Whatcanweinferfrom“ThecaseofPhineasGage”?()
因特网提供的服务中,使用最频繁的是____________。
A.肌凝蛋白B.肌纤蛋白C.肌钙蛋白D.钙调素E.原肌凝蛋白横桥属于()
《饮酒》是一首()
濒死
饮食不化。胸脘痞闷,肠鸣泄泻,四肢乏力,形体消瘦,面色萎黄,舌淡苔白腻,脉虚缓。宜选用
徒手肌力检查时,肌力分
A.中府、中冲B.天池、中冲C.睛明、至阴D.睛明、厉兑E.少泽、听宫足太阳膀胱经的起、止穴是()
该批设备进口时应填报()。该机器人留购申报时,应按()向海关申报。
UglyIsOnlySkin-deepItmaynotbemuchtolookat.Butbeneaththathumbleexteriorbeatsanair-cooledengine.Itwon’tb
最新回复
(
0
)