首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设b1=a1,b2=a1+a2,…,br=a1+a2+…+ar,且向量组a1,a2,…,ar线性无关,证明:向量组b1,b2,…,br线性无关.
设b1=a1,b2=a1+a2,…,br=a1+a2+…+ar,且向量组a1,a2,…,ar线性无关,证明:向量组b1,b2,…,br线性无关.
admin
2016-05-09
45
问题
设b
1
=a
1
,b
2
=a
1
+a
2
,…,b
r
=a
1
+a
2
+…+a
r
,且向量组a
1
,a
2
,…,a
r
线性无关,证明:向量组b
1
,b
2
,…,b
r
线性无关.
选项
答案
根据已知,可得 (b
1
,b
2
,…,b
r
)=(a
1
,a
2
,…,a
r
)K, 其中 [*] 向量组a
1
,a
2
,…,a
r
线性无关,则r(a
1
,a
2
,…,a
r
)=r, 又因为[*] 故K可逆,由矩阵的性质,得r(b
1
,b
2
,…,b
r
)=r(a
1
,a
2
,…,a
r
)=r. 所以b
1
,b
2
,…,b
r
线性无关.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Sgw4777K
0
考研数学一
相关试题推荐
设f(χ)=在χ=0处连续,则f(χ)在χ=0处().
已知f(u)有二阶连续导数,且z=f在x>0时满足.求z的表达式.
设a,Aa,A2a线性无关,且3Aa-2A2a-A3a=0,其中A为3阶矩阵,a为3维列向量记P=(a,Aa,A2a),求3阶矩阵B,使得P-1AP-B,并计算行列式|A+E|
设A是n阶矩阵,A经过初等行变换得到B,则正确的是()
设二次型f(x1,x2)=ax12+bx22+4x1x2经过正交变换x=Qy化为g(y1,y2)=2y12+2y1y2二次型f与g的矩阵分别为A与B若AX=B,求X
设f(x)是(-∞,+∞)内以T(T>0)为周期的连续函数,且f(-x)=f(x)证明:∫0nTxf(x)dx=f(x)dx(n为正整数);
设A=,若齐次方程组AX=0的任一非零解均可用a线性表示,则a=().
设矩阵Am×n,r(A)=m<n,Em为m阶单位矩阵,下述结论中正确的是().
设A=,已知A有三个线性无关的特征向量且λ=2为矩阵A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.
设函数f(x)在[1,+∞)上连续,若由曲线y=f(x),直线x=1,x=t(t>1)与x轴所围成的平面图形绕x轴旋转一周所成的旋转体积为V(t)=π/3[t2f(t)-f(1)].试求y=f(x)所满足的微分方程,并求该微分方程满足条件y|x=2=2/9
随机试题
硝酸酯类硝普钠
A.直肠全层与腰小肌结节缝合B.直肠浆膜肌层结节缝合C.直肠全层与髂骨结节内侧肌肉结节缝合D.直肠浆膜肌层与髂骨内侧肌肉结节缝合E.肛门周围荷包缝合贵宾犬,直肠脱出,经整复后直肠又脱出4次,实施直肠固定术。适宜的缝合方法为
合成血红蛋白的基本原料是
最常见的食物中毒是
赵某,男,45岁,阵发性呼气性呼吸困难,烦躁不安,持续6小时,应用氨茶碱无效,痰黏。过去有哮喘病史。查体:满肺哮鸣音,可见肺气肿征。治疗应首选的药物是()
就要约所作的以下表述中, ( )的表述是正确的。
DoctorsrecommendVitaminCforkeepingcolds______bay.
把理想变为现实的根本途径是
Manyresidentsofapartmentcomplexesobjecttonoisyneighbors.
TheFour-DayWorkweekIsWinningFansInanerawhenmostofusseemtobeworkingmorehoursthanever(providedwe’restil
最新回复
(
0
)