首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设实二次型f(x1,x2,x3)=xATx的秩为2,且α1=(1,0,0)T是(A一2E)x=0的解,α2=(0,一1,1)T是(A一6E)x=0的解. 用正交变换将该二次型化成标准形,并写出所用的正交变换和所化的标准形;
设实二次型f(x1,x2,x3)=xATx的秩为2,且α1=(1,0,0)T是(A一2E)x=0的解,α2=(0,一1,1)T是(A一6E)x=0的解. 用正交变换将该二次型化成标准形,并写出所用的正交变换和所化的标准形;
admin
2016-01-11
74
问题
设实二次型f(x
1
,x
2
,x
3
)=xA
T
x的秩为2,且α
1
=(1,0,0)
T
是(A一2E)x=0的解,α
2
=(0,一1,1)
T
是(A一6E)x=0的解.
用正交变换将该二次型化成标准形,并写出所用的正交变换和所化的标准形;
选项
答案
由α
1
=(1,0,0)
T
是(A一2E)x=0的解,α
2
=(0,一1,1)
T
是(A一6E)x=0的解,得Aα
1
=2α
1
,Aα
2
=6α
2
,于是得A的两个特征值为λ
1
=2,λ
2
=6,其对应的特征向量依次为α
1
=(1,0,0)
T
,α
2
=(0,一1,1)
T
. 又由于实二次型f(x
1
,x
2
,x
3
)的秩为2,所以A的另一个特征值为λ
3
=0,设其对应的特征向量为α=(x
1
,x
2
,x
3
)
T
,[*] 令[*]则P为正交矩阵,故x=Py为正交变换,该变换将二次型化成标准形为f(x
1
,x
2
,x
3
)=2y
1
2
+6y
2
2
.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Rv34777K
0
考研数学二
相关试题推荐
设n阶矩阵A的伴随矩阵A*≠O,且非齐次线性方程组AX=b有两个不同解η1,η2,则下列命题正确的是().
A=求a,b及可逆矩阵P,使得P-1AP=B.
设A,B为三阶矩阵,且AB=A-B,若λ1,λ2,λ3为A的三个不同的特征值,证明:(1)AB=BA:(2)存在可逆矩阵P,使得P-1AP,P-1BP同时为对角矩阵.
设二维非零向量α不是二阶方阵A的特征向量.(1)证明:α,Aα线性无关;(2)若A2α+Aα-6α=0,求A的特征值,讨论A可否对角化;
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2-4E的特征值为0,5,32.求A-1的特征值并判断A-1是否可对角化.
设二次型f=2x12+2x22+ax32+2x1x2+2bx1x3+2x2x3经过正交变换X=Qy化为标准形f=y12+y22+4y32,求参数a,b及正交矩阵Q.
三元二次型f=XTAX经过正交变换化为标准形f=y12+y22-2y32,且A*+2E的非零特征值对应的特征向量为α1=求此二次型.
设二维随机变量(x,y)的联合密度函数为f(x,y)=则k为().
设函数f(x)在区间[0,4]上连续,且=0,求证:存在ξε(0,4)使得f(ξ)+f(4-ξ)=0。
随机试题
不动产按照开发程度由低到高的顺序,排列正确的是()。
进行市场调查首先要_______。
患者,女,45岁。宫颈糜烂面占宫颈面积的2/3,最有效的治疗方法是
肘关节脱位中最常见的类型是
根据《水利水电建设工程验收规程》SL223—2008的有关规定,分部工程验收应由项目法人或()主持。
企业财务报表按规定须经注册会计师审计的,注册会计师及其会计师事务所应对财务报表的真实性、完整性负责。()
食盐中碘的含量服从正态分布,从中抽取容量n=11的样本,测得=34×10-6g,s=6.8×10-6g,则碘含量的方差σ2的置信度为95%的置信区间是()。(X0.9752(10)=20.48,X0.9752(11)=21.92,X0.0252
复审案件合议组成员有下列何种情形的,应当自行回避或当事人有权请求其回避?
某高校要开展一次节能环保宣传活动,宣传对象是距离学校2公里外的某个小学,同时,要邀请另外5个小学的学生代表来参加。假如你是该高校的学生,让你来负责策划组织工作,你怎么做?
WhendoesChannel2begineveningprogrammes?
最新回复
(
0
)