首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)∈C[a,b],在(a,b)内二阶可导. (Ⅰ)若f(a=0,f(b)0.证明:存在ξ∈(a,6),使得f(ξ)f’’(ξ)+f’2(ξ)=0; (Ⅱ)若f(a)=f(b)==0,证明:存在η∈(a,b),使得f’’(η)=f(η).
设f(x)∈C[a,b],在(a,b)内二阶可导. (Ⅰ)若f(a=0,f(b)0.证明:存在ξ∈(a,6),使得f(ξ)f’’(ξ)+f’2(ξ)=0; (Ⅱ)若f(a)=f(b)==0,证明:存在η∈(a,b),使得f’’(η)=f(η).
admin
2020-02-27
73
问题
设f(x)∈C[a,b],在(a,b)内二阶可导.
(Ⅰ)若f(a=0,f(b)<0,f
﹢
’
(a)>0.证明:存在ξ∈(a,6),使得f(ξ)f
’’
(ξ)+f
’2
(ξ)=0;
(Ⅱ)若f(a)=f(b)=
=0,证明:存在η∈(a,b),使得f
’’
(η)=f(η).
选项
答案
(Ⅰ)因为f
﹢
’
(a)>0,所以存在c∈(a,b),使得f(c)>f(a)=0,因为f(c)f(b)<0,所以存在x
0
∈(c, b),使得f(x
0
)=0;因为f(a)=f(x
0
)=0;由罗尔定理,存在x
1
∈(a,x
0
),使得f
’
(x
1
)=0.令φ(x)=f(x)f
’
(x),由φ(a)=φ(x
1
)=0,根据罗尔定理,存在ξ∈(a,x
1
)[*](a,b),使得φ
’
(ξ)=0.而φ
’
(x)=f (x)f
’’
+f
’2
(x),所以f(ξ)f
’’
(ξ)+f
’2
(ξ)=0. (Ⅱ)令F(x)=[*],因为F(a)-F(b)=0,所以由罗尔定理,存在c∈(a,b),使得F
’
(c)=0,即f(c)=0.令h(x)=e
x
f(x),由h(a)=h(c)=h(b)=0,根据罗尔定理,存在ξ
1
∈(a,c),ξ
2
∈(c,b),使得h
’
(ξ
1
)=h
’
(ξ
2
)=0,则h
’
(x)=e
x
[f(x)+f
’
(x)],所以f(ξ
1
)+f
’
(ξ
1
)=0,f(ξ
2
)+f
’
(ξ
2
)=0.再令G(x)=e
﹣x
[f(x)+f
’
(x)],由G(ξ
1
)=G(ξ
2
)=0,根据罗尔定理,存在η∈(ξ
1
,ξ
2
)[*](a,6),使得G
’
(η)=0,而G
’
(x)=e
﹣x
[f
’’
(x)-f(x)]且e
﹣x
≠0,所以f
’’
(η)=f(η).
解析
转载请注明原文地址:https://www.kaotiyun.com/show/QtD4777K
0
考研数学三
相关试题推荐
设α1,α2,α3均为3维列向量,记矩阵A=(α1,α2,α3),B=(α1+α2+α3,α1+2α2+4α3,α1+3α2+9α3).如果丨A丨=1,那么丨B丨=__________.
y=,则y’=________.
=________.
设f(x)在[a,b]上连续c,d∈(a,b),t1>0,t2>0.证明:在[a,b]内必有点ξ,使得t1ff(c)+t2f(d)=(t1+t2)f(ξ)
已知A是n阶矩阵,α1,α2,…,αs是n维线性无关向量组,若Aα1,Aα2,…,Aαs线性相关.证明:A不可逆.
已知∫f’(x3)dx=x3+C(C为任意常数),则f(x)=________。
求微分方程y"一y’+2y=0的通解.
设A为n阶矩阵,k为常数,则(kA)*等于().
设区域D由曲线y=smx,x=(x5y—1)dxdy=()
设随机变量X~U[-1,1],则随机变量U=arcsinX,V=arccosX的相关系数为().
随机试题
下列不是胃痛之脾胃虚寒证的临床表现的是
一患者使用链霉素后听力下降,停药几周后听力仍不能恢复,这是
我国经济学界在研究我国的经济周期波动过程将从1953年以来的经济增长率的波动划分为9个完整的经济周期,其中波长最长的是( )。
在现代制造业中,物流环节的()超过制造环节的加工成本。
(2017·天津)小李在跳高比赛中得了冠军,他说,这个冠军的获得完全得益于体育场内观众的鼓劲。小李的说法属于()
商品诸因素中反映人与自然关系的是()。
心身疾病指心理社会因素在发病、发展过程中起重要作用的躯体器质性疾病,以下属于心身疾病的是()。
下列关于ping命令说法中正确的有()。
阅读下述材料,按要求作答。材料一:直到本世纪初(20世纪),社会对儿童一直毫不关心。没有儿科专家,也没有儿童医院。儿童成了牺牲品。大批儿童由于无知或缺乏正当的教养而死亡。……因此,整个社会必须关心儿童,注意儿童的重要性,必须迅速救治社会所处的极度
美国现代舞的先驱是()。
最新回复
(
0
)