首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是n阶矩阵,α1,α2,…,αs是n维线性无关向量组,若Aα1,Aα2,…,Aαs线性相关.证明:A不可逆.
已知A是n阶矩阵,α1,α2,…,αs是n维线性无关向量组,若Aα1,Aα2,…,Aαs线性相关.证明:A不可逆.
admin
2019-01-05
77
问题
已知A是n阶矩阵,α
1
,α
2
,…,α
s
是n维线性无关向量组,若Aα
1
,Aα
2
,…,Aα
s
线性相关.证明:A不可逆.
选项
答案
因Aα
1
,Aα
2
,…,Aα
s
线性相关,故存在不全为零的数k
1
,k
2
,…,k
s
,使得 k
1
Aα
1
+k
2
Aα
2
+…+k
s
Aα
s
=0, 即 A(k
1
α
1
+k
2
α
2
+…+k
s
α
s
)=Aξ=0. 其中ξ=k
1
α
1
+k
2
α
2
+…+k
s
α
s
.因已知α
1
,α
2
,…,α
s
线性无关,故对任意不全为零的k
1
,k
2
,…,k
s
,有 ξ=k
1
α
1
+k
2
α
2
+…+k
s
α
s
≠0, 而 Aξ=0. 说明线性方程组AX=0有非零解,从而|A|=0,A是不可逆矩阵.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/9ZW4777K
0
考研数学三
相关试题推荐
设二次型f(x1,x2,x3)=2x12-x22+ax32+2x1x2-8x1x3+2x2x3在正交变换x=Qy下的标准型为λ1y12+λ2y22,求a的值及一个正交矩阵Q.
求幂级数的收敛域与和函数.
=________。
设φ连续,且x2+y2+z2=∫xyφ(x+y一t)dt,则=_____________.
设f(x)在任意点x0∈(一2,+∞)有定义,且f(一1)=1,a为常数,若对任意x,x0∈(一2,+∞)满足则函数f(x)在(一2,+∞)内
设某种电子器件的寿命(以小时计)T服从指数分布,概率密度为其中λ>0未知.现从这批器件中任取n只在时刻t=0时投入独立寿命试验,试验进行到预定时间T0结束,此时有k(0<k<n)只器件失效,试求λ的最大似然估计.
设总体X和y相互独立,分别服从N(μ,σ12),N(μ,σ22).X1,X2,…,Xm和Y1,Y2,…,Yn是分别来自X和Y的简单随机样本,其样本均值分别为,样本方差分别为SX2,SY2.令求EZ.
已知(axy3一y2cosx)dx+(1+bysinx+3x2y2)dy为某二元函数f(x,y)的全微分,则常数
假设二维随机变量(X,Y)在矩形区域G={(x,y)|0≤x≤2,0≤y≤1}上服从均匀分布.记求U和V的相关系数p.
(06年)设非齐次线性微分方程y′+P(χ)y=Q(χ)有两个不同的解y1(χ),y2(χ),C为任意常数,则该方程的通解是【】
随机试题
平面简谐波在弹性介质中传播时,在传播方向上介质元若在负的最大位移处,则其()
有利于实现标准化和系列化的是()模板。
全部成本费用加成定价法可以保证全部生产耗费得到补偿,但不一定满足企业销售收入或利润最大化的要求。()
恶性淋巴瘤比较有特征性的临床表现是()。
中国的传统绘画与诗歌、散文、楹联、书法以及篆刻相互影响、相互交融,形成了诗书画一体的艺术形式,成为与西方艺术风格迥异的东方艺术的表现形式之一。这表明()。
浅论共产国际的功与过。
利克特(R.A.Likert)提出的态度测量方法是
根据继承法的有关规定,下列有关继承的表述正确的是()。
在资本主义的商品生产过程中,土地、设备和原材料等生产资料的价值是借助于生产者的
Thechemicalisdeadlytoratsbutsafetocattle.
最新回复
(
0
)