首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=xTAx=ax12+2x22-2x32+2bx1x3(b﹥0),其中二次型矩阵A的特征值之和为1,特征值之积为﹣12.(1)求a,b的值;(2)利用正交变换将二次型f化为标准形,并写出所用的正交变换和对应的正交矩阵.
设二次型f(x1,x2,x3)=xTAx=ax12+2x22-2x32+2bx1x3(b﹥0),其中二次型矩阵A的特征值之和为1,特征值之积为﹣12.(1)求a,b的值;(2)利用正交变换将二次型f化为标准形,并写出所用的正交变换和对应的正交矩阵.
admin
2020-06-05
50
问题
设二次型f(x
1
,x
2
,x
3
)=x
T
Ax=ax
1
2
+2x
2
2
-2x
3
2
+2bx
1
x
3
(b﹥0),其中二次型矩阵A的特征值之和为1,特征值之积为﹣12.(1)求a,b的值;(2)利用正交变换将二次型f化为标准形,并写出所用的正交变换和对应的正交矩阵.
选项
答案
(1)二次型f的矩阵为 A=[*] 设矩阵A的特征值为λ
1
,λ
2
,λ
3
,依题意有 [*] 由于b﹥0,解得a=1,b=2. (2)矩阵A的特征多项式为 |A-λE|=[*] =﹣(λ-2)
2
(λ+3) 所以得A的特征值为λ
1
=λ
2
=2,λ
3
=﹣3. 当λ
1
=λ
2
=2时,解方程组(A-2E)x=0.由 (A-2E)=[*] 得基础解系为p
1
=(0,1,0)
T
,p
2
=(2,0,1)
T
,p
1
,p
2
正交,将其单位化得 q
1
=(0,1,0)
T
,q
2
=[*] 当λ
3
=﹣3时,解方程组(A+3E)x=0.由 (A+3E)=[*] 得基础解系为p
3
=(1,0,﹣2)
T
,将其单位化得q
3
=[*].于是正交变换为 [*] 且把二次型f(x
1
,x
2
,x
3
)化为2y
1
2
+2y
2
2
-3y
3
2
.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/QNv4777K
0
考研数学一
相关试题推荐
设随机事件A与B互不相容,且A=B,则P(A)=_______.
行列式的结果是_______.
设L为正向圆周x2+y2=2在第一象限中的部分,求曲线积分的值.
设A,B是任意两个随机事件,又知BA,且P(A)<P(B)<1,则一定有()
设A,B均为n阶可逆矩阵,且(A+B)2=E,则(E+BA—1)—1=()
实对称矩阵A的秩等于r,它有£个正特征值,则它的符号差为()
设A为三阶矩阵,1,1,2是A的三个特征值,α1,α2,α3分别为对应的三个特征向量,则().
[2013年]设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22.
)设二次型f(x1,x2,x3)=2x12—x22+ax32+2x1x2—8x1x3+2x2x3在正交变换x=Qy下的标准形为λ1y12+λ2y22,求以的值及一个正交矩阵Q.
[2009年]设二次型f(x1,x2,x3)=ax12+ax22+(a-1)x32+2x1x3—2x2x3.求二次型f(x1,x2,x3)的矩阵的所有特征值;
随机试题
审美活动与宗教活动的联系体现在【】
心力衰竭时,早期分泌增加的体液因子是
伤寒极期的表现不包括哪种表现
易产生耐受性的是()。
关于速动资产的等式正确的有()。
对外贸易乘数
腭皱襞(palatalrugae)
软件集成测试将已通过单元测试的模块集成在一起,主要测试模块之间的协作性。从组装策略而言,可以分为(7)。集成测试计划通常是在(8)阶段完成,集成测试一般采用黑盒测试方法。(8)
计算机网络拓扑反映出网络中各实体之间的______关系。
CanTonyBlairSavetheWorldofBooks?AtthebeginningofAJourney,TonyBlairboaststhathehas"thesoulofarebel".
最新回复
(
0
)