首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)设A,B为n阶矩阵,|λE-A|=|λE-B|且A,B都可相似对角化,证明:A~B. (2)设,矩阵A,B是否相似?若A,B相似,求可逆矩阵P,使得P-1AP=B.
(1)设A,B为n阶矩阵,|λE-A|=|λE-B|且A,B都可相似对角化,证明:A~B. (2)设,矩阵A,B是否相似?若A,B相似,求可逆矩阵P,使得P-1AP=B.
admin
2018-05-17
68
问题
(1)设A,B为n阶矩阵,|λE-A|=|λE-B|且A,B都可相似对角化,证明:A~B.
(2)设
,矩阵A,B是否相似?若A,B相似,求可逆矩阵P,使得P
-1
AP=B.
选项
答案
(1)因为|λE—A|=|λE—B|,所以A,B有相同的特征值,设为λ
1
,λ
2
,…,λ
n
,因为A,B可相似对角化,所以存在可逆矩阵P
1
,P
2
,使得 [*] 由P
1
-1
AP
1
=P
2
-1
BP
2
得(P
1
P
2
-1
)
-1
A(P
1
P
2
-1
)=B, 取P
1
P
2
-1
=P,则P
-1
AP=B,即A~B. (2)由|λE-A|=[*]=(λ-1)
2
(λ-2)=0 得A的特征值为λ
1
=2,λ
2
=λ
3
=1; 由|λE-B|=[*]=(λ-1)
2
(λ-2)=0 得B的特征值为λ
1
=2,λ
2
=λ
3
=1. 由E-A=[*]得r(E-A)=1,即A可相似对角化; 再由E-B=[*]得r(E-B)=1,即B可相似对角化,故A~B. 由2E-A→[*]得A的属于λ
1
=2的线性无关特征向量为 [*] 得A的属于λ
2
=λ
3
=1的线性无关的特征向量为 [*] 由2E-B→[*]得B的属于λ
1
=2的线性无关特征向量为β=[*]; 由E-B→[*]得 B的属于λ
2
=λ
3
=1的线性无关的特征向量为 [*] 再令P=P
1
P
2
-1
=[*], 则P
-1
AP=B.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Pck4777K
0
考研数学二
相关试题推荐
(2004年试题,三(9))设矩阵的特征方程有一个二重根,求口的值,并讨论A是否可相似对角化.
(2010年试题,1)函数的无穷间断点数为().
(2007年试题,一)当x→0时,与等价的无穷小量是().
(2007年试题,二)设矩阵则A3的秩为__________.
(1998年试题,二)设A是任一n(n≥3)阶方阵,A*是其伴随矩阵,又k为常数,且k≠0,±1,则必有(kA)*=().
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记。(1)证明二次型f对应的矩阵为2ααT+ββT;(2)若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22.
已知的一个特征向量.(1)试确定参数a,b及特征向量考所对应的特征值;(2)问A能否相似于对角阵?说明理由.
已知非齐次线性方程组有3个线性无关的解.(1)证明方程组的系数矩阵A的秩r(A)=2;(2)求a,b的值及方程组的通解.
已知函数f(x)在区间(1-δ,1+δ)内具有二阶导数,f’(x)严格单调减少,且f(1)=f’(1)=1,则
设,其中c1,c2,c3,C4为任意常数,则下列向量组线性相关的为
随机试题
MVC设计模式包含模型层、视图层和控制层,在下列组件中扮演控制器角色的是()。
化学致癌的促进阶段,较为正确的一种描述是
患者,女性,30岁,行甲状腺大部切除术,术后发音时音调低钝,但饮水时并不出现误咽、呛咳,可能是术中损伤了
政府采购的执行模式应当包括()。
关于集体商标保护的地理标志侵权违法行为,下列表述正确的是()。
甲股份有限公司(以下称甲公司)于2014年3月上市,董事会成员为7人。2015年甲公司召开的3次董事会分别讨论事项如下。(1)讨论通过了为其子公司一次性提供融资担保4000万元的决议,其时甲公司总资产为1亿元。(2)拟提请股东大会聘任乙公司的总经理
当管理层的作用是积极主动的,而变革的性质是转化时,这时的变革是()。
“曾经沧海难为水,除却巫山不是云”的作者是()。
在SQL的数据定义功能中,删除表字段名的命令格式是()。
A、Theyagreetomeetinthealleytostudy.B、Theyagreetotutoreachotherforupcomingtests.C、Theyagreetostudypoetryto
最新回复
(
0
)