首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设D0是单连通区域,点M0∈D0,D=D0\{M0}(即D是单连通区域D0除去一个点M0),若p(x,y),Q(x,y)在D有连续的一阶偏导数且((x,y)∈D),问: (Ⅰ)∫LPdx+Qdy是否一定在D上与路径无关; (Ⅱ)若又存在一条环绕M0的分段光
设D0是单连通区域,点M0∈D0,D=D0\{M0}(即D是单连通区域D0除去一个点M0),若p(x,y),Q(x,y)在D有连续的一阶偏导数且((x,y)∈D),问: (Ⅰ)∫LPdx+Qdy是否一定在D上与路径无关; (Ⅱ)若又存在一条环绕M0的分段光
admin
2016-10-26
111
问题
设D
0
是单连通区域,点M
0
∈D
0
,D=D
0
\{M
0
}(即D是单连通区域D
0
除去一个点M
0
),若p(x,y),Q(x,y)在D有连续的一阶偏导数且
((x,y)∈D),问:
(Ⅰ)∫
L
Pdx+Qdy是否一定在D上与路径无关;
(Ⅱ)若又存在一条环绕M
0
的分段光滑闭曲线C
0
使得∫
C
0
Pdx+Qdy=0,∫
L
Pdx+Qdy)是否一定在D上与路径无关.
选项
答案
(Ⅰ)这里D不是单连通区域,所以不能肯定积分∫
L
PdX+Qdy在D上与路径无关.例如:积分[*],由于P(x,y)=[*]则 [*] 即在全平面除原点外P(x,y),Q(x,y)均有连续的一阶偏导数,且[*]. 但若取L为C
+
即逆时针方向的以原点为圆心的单位圆周,则 [*][-sinθ(cosθ)′+cosθ(sinθ)′]dθ=2π≠0, 因此,该积分不是与路径无关. (Ⅱ)能肯定积分在D上与路径无关.按挖去奇点的思路,我们作以M
0
为心,ε>0为半径的圆周C
ε
,使C
ε
在C
0
所围区域内.C
ε
和C
ε
所围区域记为D
ε
(见图10.10).在D
ε
上用格林公式得 [*] [*] 其中C
0
,C
ε
均是逆时针方向.所以 [*] 因此,ε>0充分小,只要C
ε
在C
0
所围区域内,均有 [*]Pdx+Qdy=0.① 现在我们可证:对D内任意分段光滑闭曲线C,均有 ∮
C
Pdx+Qdy=o. ② 若C不包围M
0
,在C所围的区域上用格林公式,立即可得②式成立.若C包围M
0
点,则可作以M
0
为心,ε>0为半径的小圆周C
ε
,使得C
ε
在C所围区域内且①成立.在C与C
ε
所围的区域上用格林公式同理可证 ∫
C
Pdx+Qdy=[*]Pdx+Qdy=0.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/P2u4777K
0
考研数学一
相关试题推荐
设f(x)在(-∞,+∞)上可导,(1)若f(x)为奇函数,证明fˊ(x)为偶函数;(2)若f(x)为偶函数,证明fˊ(x)为奇函数;(3)若f(x)为周期函数,证明fˊ(x)为周期函数.
由Y=lgx的图形作下列函数的图形:
设n阶矩阵A非奇异(n≥2),A*是A的伴随矩阵,则
由结论可知,若令φ(x)=xf(x),则φˊ(x)=f(x)+xfˊ(x).因此,只需证明φ(x)在[0,1]内某一区间上满足罗尔定理的条件.令φ(x)=xf(x),由积分中值定理可知,存在η∈(0,1/2)使[*]
设f(x)是连续函数当f(x)是以2为周期的周期函数时,证明函数也是以2为周期的周期函数.
设已知线性方程组Ax=b存在2个小吲的解.求方程组Ax=b的通解.
求I=,其中C+是以A(1,1),B(2,2)和E(1,3)为顶点的三角形的正向边界线.
D是顶点分别为(0,0),(1,0),(1,2)和(0,1)的梯形闭区域,则(1+x)sinydσ=_________.
设二维随机变量(X,y)服从区域D上的均匀分布,其中D是由x±y=1与x=0所围成的三角形区域.求条件概率密度fY|X(y|x).
求解初值问题
随机试题
计划发行债券的公司,担心未来融资成本上升,通常会利用利率期货进行()来规避风险。
下列词中,和其他三项不属于一个语义场的词是()
目标监测包括()
A.下肢关节主动屈伸运动B.下肢关节被动旋转运动C.桥氏运动D.空踩自行车运动E.持续性被动运动(CPM)股骨颈骨折病人术后第2周可进行
在诊断能量范围内不产生的效应是
医学道德的原则不包括
微分方程y’’-3y’+2y=xex的待定特解的形式是:
______animportantdecisionmoreonemotionthanonreason,youwillregretitsoonerorlater.
(1)Muckyroads,unpredictableweather,andwetgroundthatsagsbeneathyourfeet.ItmustbespringtimeinNewEngland.(2)
Interruption,moresurelythananythingelse,killsconversation.Thebestoftalkersinterrupt【C1】______inconversation.Howe
最新回复
(
0
)