首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n.
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n.
admin
2018-11-11
88
问题
设A为m阶实对称矩阵且正定,B为m×n实矩阵,B
T
为B的转置矩阵,试证:B
T
AB为正定矩阵的充分必要条件是B的秩r(B)=n.
选项
答案
必要性. 若B
T
AB为正定矩阵,则对任意的实n维列向量x≠0,有x
T
(B
T
AB)x>0, 即 (Bx)
T
A(Bx)>0.又A为正定矩阵,于是Bx≠0.因此齐次线性方程组Bx=0仅有零解,从而r(B)=n. 充分性. 因(B
T
AB)
T
=B
T
A
T
B=B
T
AB,故B
T
AB为对称矩阵. 若r(B)=n,则齐次线性方程组Bx=0仅有零解.因此,对任意的n维实列向量x≠0,必有Bx≠0. 由已知,A为正定矩阵,故对Bx≠0,有(Bx)
T
A(Bx)>0,x
T
(B
T
AB)x>0,故B
T
AB为正定矩阵.
解析
本题主要考查实对称矩阵为正定矩阵的充分必要条件,齐次线性方程组仅有零解的判别.注意运用齐次线性方程组Bx=O只有零解充分必要条件是
,则有Bx≠0,这是证题的关键.
转载请注明原文地址:https://www.kaotiyun.com/show/Oxj4777K
0
考研数学二
相关试题推荐
若矩阵相似于对角矩阵A,试确定常数α的值;并求可逆矩阵P,使P一1AP=A.
设u=u(x,y)为二元可微函数,且满足,则当x≠0时,=()
计算,其中L是由曲线x2+y2=2y,x2+y2=4y,所围成的区域的边界,按顺时针方向.
设A=(α1,α2,α3)是5×3矩阵β1,β2是齐次线性方程组ATx=0的基础解系,试证α1,α2,α3,β1,β2线性无关.
设4维向量空间V的两个基分别为(I)α1,α2,α3,α4;(Ⅱ)β1=α1+α2+α3,β2=α2+α3,β3=α3+α4,β4=α4,求由基(Ⅱ)到基(I)的过渡矩阵;
(1)证明方程xn+xn-1+…+x=1(n为大于1的整数)在区间内有且仅有一个实根;(2)记(1)中的实根为xn,证明存在,并求此极限.
求极限
设f(x)连续且f(0)=0,fˊ(0)=2,求极限
设f(x)=∫0xecostdt,∫0πf(x)cosxdx=_______
计算下列各题:(Ⅰ)设其中f(t)三阶可导,且f〞(t)≠0,求;(Ⅱ)设的值.
随机试题
(2010年4月)根据《商标国际注册马德里协定》规定,商标的国际注册在任何成员国生效后,保护期限为_____,且可无限制续展。
简述数据收集和调查的常用方法。
《春江花月夜》的主旨是()
高眼压作用下,混有虹膜组织的角膜瘢痕易形成
具有消食化积,行气散瘀功效的是()
下列属于一般情况下子女教育财产投入风险的是( )。
最初的人类。为了寻找足够的食物,经常过着一种漂泊不定的生活,漂泊到一个地方,即随便找个临时夜宿处。这种时常迁徙但又随遇而安的居住方式,应当视作人类从巢居形式进入穴居形式之前所经历的一个过渡阶段。对文中“过渡阶段”的概括最正确的一项是()
张居正调抗倭名将()镇守蓟门,对安定北方人民的生活和保障社会生产的发展起了积极作用。
下列选项中,属于处断的一罪的是()
Whatisaphrasebookdesignedfor?
最新回复
(
0
)