首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A==(α1,α2,…,αs),其中ai≠aj(i≠j,i=1,2,…,s,j=1,2,…,s).讨论向量组α1,α2,…,αs的线性相关性.
设A==(α1,α2,…,αs),其中ai≠aj(i≠j,i=1,2,…,s,j=1,2,…,s).讨论向量组α1,α2,…,αs的线性相关性.
admin
2020-09-25
64
问题
设A=
=(α
1
,α
2
,…,α
s
),其中a
i
≠a
j
(i≠j,i=1,2,…,s,j=1,2,…,s).讨论向量组α
1
,α
2
,…,α
s
的线性相关性.
选项
答案
设k
1
α
1
+k
2
α
2
+…+k
s
α
s
=0,则当此向量方程有非零解,即k
1
,k
2
,…,k
s
不全为零时α
1
,α
2
,…,α
s
线性相关,否则线性无关. 由k
1
α
1
+k
2
α
2
+…+k
s
α
s
=0得(α
1
,α
2
,…,α
s
)[*]=0,即A
n×s
x
s×1
=0. 所以问题转化为求线性方程Ax=0的解: ①当n<s时,R(A)≤min{n,s)<s,故此方程有非零解,从而可得α
1
,α
2
,…,α
s
线性相关; ②当n=s时,|A|为一范德蒙德行列式,由a
i
≠a
j
(i≠j)可知|A|≠0,故R(A)=n,故此方程仅有零解,故α
1
,α
2
,…,α
s
线性无关; ③当n>s时,A的前s行组成的子式非零,故R(A)≥s,故Ax=0仅有零解,故α
1
,α
2
,…,α
s
线性无关.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/OWx4777K
0
考研数学三
相关试题推荐
已知实二次型f(x1,x2,x3)=a(x12+x22+x32)+4x1x2+4x1x3+4x2x3经正交变换x=Py可化成标准形f=6y12,则a=_________.
设行向量组(2,1,1,1),(2,1,a,a),(3,2,1,a),(4,3,2,1)线性相关,且a≠1,则a=___________.
已知且n维向量α1,α2,α3线性无关,则α1+α2,α2+2α3,Xα3+Yα1线性相关的概率为________.
已知α1,α2,α3,β,γ都是4维列向量,且|α1,α2,α3,β|=a,|β+γ,α3,α2,α1|=b,则|2γ,α1,α2,α3|=________.
已知矩阵,若线性方程组Ax=b有无穷多解,则a=________.
若绝对收敛,条件收敛,则()
设向量α1,α2,…,αt是齐次线性方程组AX=0的一个基础解系,向量β不是方程组AX=0的解,即Aβ≠0.试证明;向量组β,β+α1,…,β+αt线性无关.
(14年)设函数f(χ),g(χ)在区间[a,b]上连续,且f(χ)单调增加,0≤g(χ)≤1.证明:(Ⅰ)0≤∫aχg(t)dt≤(χ-a),χ∈[a,b](Ⅱ)f(χ)dχ≤∫abf(χ)g(χ)dχ.
(98年)设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0.记n阶矩阵A=αβT.求:(1)A2;(2)矩阵A的特征值和特征向量.
设向量α1,α2,…,αt是齐次线性方程组.AX=0的一个基础解系,向量β不是AX=0的解,即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
随机试题
“绝对运动中包含着相对静止,相对静止中包含着绝对运动”,这是一种()
下列属于腹主动脉发出的成对的脏支是()
关于胚泡结构的描述,错误的是
向心性视野缩小可见于
日常防止非洲猪瘟传入我国的最主要措施是
叩诊的注意事项之一是
当天气由于燥变为潮湿时,下列说法哪项是正确的()。
教育目的是教育活动的出发点和归宿,其层次的多样性使它具有多方面的功能,其中不包括()。
以下说法正确的是()。
求极限.
最新回复
(
0
)