首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A==(α1,α2,…,αs),其中ai≠aj(i≠j,i=1,2,…,s,j=1,2,…,s).讨论向量组α1,α2,…,αs的线性相关性.
设A==(α1,α2,…,αs),其中ai≠aj(i≠j,i=1,2,…,s,j=1,2,…,s).讨论向量组α1,α2,…,αs的线性相关性.
admin
2020-09-25
84
问题
设A=
=(α
1
,α
2
,…,α
s
),其中a
i
≠a
j
(i≠j,i=1,2,…,s,j=1,2,…,s).讨论向量组α
1
,α
2
,…,α
s
的线性相关性.
选项
答案
设k
1
α
1
+k
2
α
2
+…+k
s
α
s
=0,则当此向量方程有非零解,即k
1
,k
2
,…,k
s
不全为零时α
1
,α
2
,…,α
s
线性相关,否则线性无关. 由k
1
α
1
+k
2
α
2
+…+k
s
α
s
=0得(α
1
,α
2
,…,α
s
)[*]=0,即A
n×s
x
s×1
=0. 所以问题转化为求线性方程Ax=0的解: ①当n<s时,R(A)≤min{n,s)<s,故此方程有非零解,从而可得α
1
,α
2
,…,α
s
线性相关; ②当n=s时,|A|为一范德蒙德行列式,由a
i
≠a
j
(i≠j)可知|A|≠0,故R(A)=n,故此方程仅有零解,故α
1
,α
2
,…,α
s
线性无关; ③当n>s时,A的前s行组成的子式非零,故R(A)≥s,故Ax=0仅有零解,故α
1
,α
2
,…,α
s
线性无关.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/OWx4777K
0
考研数学三
相关试题推荐
设α=(1,-1,a)T是A=的伴随矩阵A*的特征向量,其中r(A*)=3,则a=__________
设3阶矩阵A的特征值为1,2,2,E为3阶单位矩阵,则|4A-1-E|=_____.
已知实二次型f(x1,x2,x3)=a(x12+x22+x32)+4x1x2+4x1x3+4x2x3经正交变换x=Py可化成标准形f=6y12,则a=_________.
设三阶方阵A的特征值是1,2,3,它们所对应的特征向量依次为α1,α2,α3,令P=(3α3,α1,2α2),则P-1AP=__________。
微分方程+y=1的通解是_________.
已知实二次型f(x1,x2,x3)=a(x12,x22,x32)+4x1x2+4x1x3+4x2x3经正交变换x=Py可化成标准形f=6y12,则a=_______.
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。(Ⅰ)计算PTDP,其中P=;(Ⅱ)利用(Ⅰ)的结果判断矩阵B—CTA-1C是否为正定矩阵,并证明你的结论。
(2012年)已知函数f(x)满足方程f’’(x)+f’(x)一2f(x)=0及f’’(x)+f(x)=2ex.(Ⅰ)求f(x)的表达式;(Ⅱ)求曲线y=f(x2)∫0x(一t2)出的拐点.
设f=xTAx,g=xTBx是两个n元正定二次型,则下列未必是正定二次型的是()
随机试题
某建筑公司在编制施工组织设计文件时,首先对工程的施工条件和技术水平进行分析,为了能对施工活动进行科学部署,应该考虑( )。
A.去枕平卧位B.去枕侧卧位C.15~30°斜坡卧位D.高坡卧位E.低坡卧位腰麻后一般采用【】
哲学的基本问题是【】
在细菌的生长曲线中,细菌的活菌数减少,细菌总数开始下降的阶段是
某企业注册资本100万元,盈余公积80万元,企业用盈余公积转增资本的最高限为()。
苏共亡党、苏联解体,是社会主义事业最大的悲剧,苏联党和人民,已付出惨痛代价。如果不能从中________足够深刻的教训,历史悲剧就无法以历史的进步来补偿,甚至会________。改革开放就是从中国实际出发,摆脱斯大林模式或苏式社会主义影响。依次填入画横线部
____________用于定义项目批准、定义项目组织,设定项目产品质量和规格、估算和控制项目费用。
计算斐波那契数列第n项的函数定义如下:intfib(intn){if(n==0)return1;elseif(n--1)return2;elseretumfib(n-1)+fib(
PowerPoint演示文稿包含了20张幻灯片,需要放映奇数页幻灯片,最优的操作方法是()。
A、工资低B、工作压力大C、没有升职空间D、想丰富自己的经历D
最新回复
(
0
)