首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的特征值为λ1=一1,λ2=λ3=1,对应于A。的特征向量为ξ1=(0,1,1)T,求A.
设3阶实对称矩阵A的特征值为λ1=一1,λ2=λ3=1,对应于A。的特征向量为ξ1=(0,1,1)T,求A.
admin
2018-11-22
54
问题
设3阶实对称矩阵A的特征值为λ
1
=一1,λ
2
=λ
3
=1,对应于A。的特征向量为ξ
1
=(0,1,1)
T
,求A.
选项
答案
对应于λ
2
=2=λ
3
=1有两个线性无关的特征向量ξ
2
,ξ
3
,它们都与ξ
1
正交,故可取 [*]
解析
本题考查实对称矩阵的性质、齐次线性方程组的基础解系的求法及方阵对角化的应用.现再对几个有关问题加以说明:
(1)关于属于λ
2
=2=λ
3
=1的特征向量的求法:设
为属于λ
2
=2=λ
3
=1的特征向量,则由于实对称矩阵属于不同特征值的特征向量必正交的性质,有ξ
1
⊥X,即0x
1
+x
2
+x
3
=0,其系数矩阵为[0 1 1],它的秩为1,因此对应齐次线性方程含1个约束未知量,若取x
2
为约束未知量,则余下来的未知量x
1
和x
2
就是自由未知量,分别令x
1
=1,x
3
=0和x
1
=0,x
3
=一1,代入由自由未知量表示的通解x
2
=0x
1
一x
3
,即得基础解系;
ξ
2
和ξ
3
就是属于λ
2
=λ
3
=1的线性无关特征向量.不少考生由方程x
2
+x
3
=0只能求到一个非零解,常常求不出ξ
1
,其原因就在于没有掌握上述“先选取约束未知量,从而选取自由未知量,进而求出基础解系”的方法.
(2)如果令矩阵P=[ξ
1
ξ
2
ξ
3
],则P可逆(但不是正交阵),使P
—1
AP=D,于是可由A=PDP
—1
解出A来,但需要求一个逆矩阵,因此不如题解中的解法简单.
转载请注明原文地址:https://www.kaotiyun.com/show/OKg4777K
0
考研数学一
相关试题推荐
设有一半径为R的球体,P0是此球的表面上的一个定点,球体上任一点的密度与该点到P0距离的平方成正比(比例常数k>0),求球体的重心位置。
袋中有1个红球,2个黑球和3个白球,现有放回地从袋中取两次,每次取一球,以X,Y,Z分别表示两次取球所取得的红球、黑球与白球的个数。(Ⅰ)求{P{X=1|Z=0};(Ⅱ)求二维随机变量(X,Y)的概率分布。
设X1,X2,…,Xn是取自正态总体N(μ,σ2)的简单随机样本,其均值和方差分别为,S2,则可以作出服从自由度为n的χ2分布的随机变量是()
曲线y=lnx上与直线x+y=1垂直的切线方程为_________。
设随机变量X和Y分别服从,已知P{X=0,Y=0}=求:(Ⅰ)(X,Y)的分布;(Ⅱ)X和Y的相关系数;(Ⅲ)P{X=1|X2+Y2=1}。
设向量组(Ⅰ):b1,…,br能由向量组(Ⅱ):a1,…,as线性表示为(b1,…,br)=(α1,…,αs)K,其中K为s×r矩阵,且向量组(Ⅱ)线性无关。证明向量组(Ⅰ)线性无关的充分必要条件是矩阵K的秩r(K)=r。
微分方程y’’+2y’+5y=0的通解为________。
设对x>0的空间区域内任意的光滑有向封闭曲面∑都有xf(x)dydz-xyf(x)dzdx-ze2xdxdy=0,其中函数f(x)在(0,+∞)内具有连续一阶导数,且f(x)=1,求f(x)。
求极限
设D由抛物线y=x2,y=4x2及直线y=1所围成.用先x后y的顺序将化成累次积分.
随机试题
简述产品改进的主要形式。
我国社会主义初级阶段具有长期性,至少需要()
在X线摄影能量范围内,散射线几乎全部来自于
报复性熬夜是指白天过得不好或者过得不满足,便想在夜晚找到补偿,虽明知熬夜危害,在夜里也没要紧事做却依旧熬夜的行为。根据上述定义,下列各项属于报复性熬夜的是:
商业银行在理财工作中必须建立健全有关规章制度和内部审核程序,并对()进行全面规范。
某企业经批准平价发行优先股,筹资费率和年股息率分别为6%和10%,所得税税率为25%,则优先股成本为()。
目的在于使学生做好上课前的各种准备的教学环节是()。
德育过程的基本矛盾是教育者与德育内容、方法之间的矛盾。()
以下关于质量保证的叙述中,错误的是_____________。
每当听到这首歌时,我就会想起你。
最新回复
(
0
)