首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设奇函数f(x)在[-1,1]上具有二阶导数,且f(1)=1,证明: (Ⅰ)存在ξ∈(0,1),使得f’(ξ)=1; (Ⅱ)存在η∈(-1,1),使得f’’(η)+f’(η)=1。
设奇函数f(x)在[-1,1]上具有二阶导数,且f(1)=1,证明: (Ⅰ)存在ξ∈(0,1),使得f’(ξ)=1; (Ⅱ)存在η∈(-1,1),使得f’’(η)+f’(η)=1。
admin
2017-01-14
77
问题
设奇函数f(x)在[-1,1]上具有二阶导数,且f(1)=1,证明:
(Ⅰ)存在ξ∈(0,1),使得f’(ξ)=1;
(Ⅱ)存在η∈(-1,1),使得f’’(η)+f’(η)=1。
选项
答案
(Ⅰ)令F(x)=f(x)-x,则 F(0)=f(0)=0,F(1)=f(1)-1=0, 由罗尔定理知,存在ξ∈(0,1)使得F’(ξ)=0,即f’(ξ)=1。 (Ⅱ)令G(x)=e
x
[f’(x)-1],由(Ⅰ)知,存在ξ∈(0,1),使C(ξ)=0,又因为f(x)为奇函数,故f’(x)为偶函数,知G(-ξ)=0,则存在η∈(-ξ,ξ)[*](-1,1),使得 G’(η)=e
η
(f’(η)-1)+e
η
f’’(η)=0, f’’(η)+f’(η)=1。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/qDu4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 B
设λ1,λ2是矩阵A的两个特征值,对应的特征向量分别为α1,α1,则().
设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则fˊ(1)=().
设总体X的概率密度为f(x)=1/2e-丨x丨(-∞
设随机变量X服从正态分布N(μ,σ2),则随σ的增大,概率P{丨x-μ丨
已知曲线,其中函数f(t)具有连续导数,且f(0)=0,fˊ(t)>0,(0<t<π/2),若曲线L的切线与x轴的交点到切点的距离值恒为1,求函数f(t)的表达式,并求此曲线L与x轴与y轴无边界的区域的面积.
已知α1=(﹣1,1,a,4)T,α2=(﹣2,1,5,a)T,α3=(a,2,10,1)T是四阶方阵A的属于三个不同特征值的特征向量,则口的取值为().
设二维随机变量(X,Y)的概率分布为已知随机事件{X=0}与{X+Y=1}相互独立,则
正定矩阵,(Ⅰ)求a;(Ⅱ)求当|X|=时XTAX的最大值.
设二次型f(x1,x2,x3)=XTAX=ax12+222+(-232)+2bx32(b>0),其中二次矩阵A的特征值之和为1,特征值之积为-12.(Ⅰ)求a,b的值;(Ⅱ)利用正交变换将二次型f化为标准形,并写出所用的正交变换
随机试题
按照我国《刑事诉讼法》的规定,强制医疗机构应当定期对被强制医疗的人进行诊断评估。在满足哪些条件时,强制医疗机构应当及时提出解除意见,报决定强制医疗的人民法院批准?()
A.雌激素水平过高B.雄激素减少,雌激素相对增多C.尿中HCG明显增高D.雄激素水平过高E.血清CEA水平增高前列腺增生症
关于风湿性疾病的临床特点,下列哪项不恰当
称为“华盖”的脏是( )。
FIDIC合同条件规定,( )情况下工程师发布“暂时停工”指令,是应给承包商相应的工期补偿的。
【背景资料】某热电厂煤仓燃煤架空运输坡道基础平面及相关技术参数,如图6.Ⅰ.1“燃煤架空运输坡道基础平面图”和图6.Ⅰ.2“基础详图”所示。【问题】根据问题1的计算结果,按定额规定混凝土损耗率1.5%,列式计算该架空运输坡道土建工程基础部
我国黑龙江北部一月份平均气温在-30℃以下,漠河的最低气温曾达到过-52.3℃,因此只能使用酒精温度计而不能使用水银温度计,是因为()。
承揽人在履行承揽合同中的下列行为,构成违约的一项是()。
设f(x)在[a,b]上连续可导,f(a)=f(b)=0,且f2(x)dx=1,则xf(x)f′(x)dx=____________.
AhardBrexitposesriskstotheintegrityoffinancialmarketsandcouldmakeithardertoprotectconsumersfromwrongdoingby
最新回复
(
0
)