首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设四元齐次线性方程组(1)为 而已知另一四元齐次线性方程组(2)的一个基础解系为 α1=(2,一1,a+2,1)T,α2=(一1,2,4,a+8)T。 当a为何值时,方程组(1)与(2)有非零公共解?并求出所有非零公共解。
设四元齐次线性方程组(1)为 而已知另一四元齐次线性方程组(2)的一个基础解系为 α1=(2,一1,a+2,1)T,α2=(一1,2,4,a+8)T。 当a为何值时,方程组(1)与(2)有非零公共解?并求出所有非零公共解。
admin
2018-02-07
71
问题
设四元齐次线性方程组(1)为
而已知另一四元齐次线性方程组(2)的一个基础解系为
α
1
=(2,一1,a+2,1)
T
,α
2
=(一1,2,4,a+8)
T
。
当a为何值时,方程组(1)与(2)有非零公共解?并求出所有非零公共解。
选项
答案
设η是方程组(1)与(2)的非零公共解,则 η=k
1
β
1
+k
2
β
2
=l
1
α
1
+l
2
α
2
,其中k
1
,k
2
与l
1
,l
2
均是不全为0的常数。 由k
1
β
1
+k
2
β
2
—l
1
α
1
一l
2
α
2
=0,得齐次方程组 [*] 对方程组(3)的系数矩阵作初等行变换,有 [*] 当a≠一1时,方程组(3)的系数矩阵变为[*]。可知方程组(3)只有零解,即k
1
=k
2
=l
1
=l
2
=0,于是η=0,不合题意。 当a=一1时,方程组(3)系数矩阵变为[*],解得k
1
=l
1
+4l
2
,k
2
=l
1
+7l
2
。 于是 η=(l
1
+4l
2
)β
1
+(l
1
+7l
2
)β
2
=l
1
α
1
+l
2
α
2
。 所以当a=一1时,方程组(1)与(2)有非零公共解,且公共解是 l
1
(2,一1,1,1)
T
+l
2
(一1,2,4,7)
T
,l
1
,l
2
为任意常数。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/MTk4777K
0
考研数学二
相关试题推荐
[*]由克莱姆法则知,该方程组有惟一解:x1=D1/D=1,x2=x3=…=xn=0.
对离散型情形证明:(1)E(X+Y)=EX+EY.(2)EXY=EXEY
设A,B均为n阶矩阵,若E-AB可逆,证明E-BA可逆.
证明下列各题:
下列函数在给定区间上是否满足罗尔定理的所有条件?如满足,请求出定理中的数值ε
作x2+(y-3)2=1的图形,并求出两个y是x的函数的单值支的显函数关系.
设函数y(x)由参数方程确定,求曲线y=y(x)向上凸的x取值.
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
设已知线性方程组Ax=6存在2个不同的解。求方程组Ax=b的通解.
对(I)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
随机试题
不属于天才的艺术创造力的是()
治疗流脑首选的抗菌药物是
确定公共建筑外围护结构节能改造构造形式的依据是()。
开放式基金是指基金份额总额不固定,基金份额可以在基金合同约定的时间和场所申购或者赎回的基金。()
以下有关管理幅度的论述,正确的是()。
案例:王老师:同学们,前面我们学习了曲线运动的相关知识以及研究曲线运动的基本方法——运动的合成与分解,在学习新课之前我们先来回顾一下。在什么情况下物体会做曲线运动?学生:当物体所受的合力的方向跟它的速度方向不在同一条直线上时,物体做曲线
市场由两个厂商组成,反需求曲线为p=300-Q,其中Q=q1+q2。(2010年西南财经大学801经济学一)厂商1先生产,厂商2跟进,求均衡q1,q2,p。
高级程序设计语言的特点是()。
ClimateChangeYou’veprobablyheardthatclimatechangeisbadnewsformanyanimalspecieslikepolarbears./Warmertemperat
Nomatterwhoheis,youngorold,people’sstateofmindtendstokeep______withtherapidchangeofsociety.
最新回复
(
0
)