首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵 (1)求A的特征值和特征向量; (2)求可逆矩阵P,使P—1AP为对角矩阵.
设n阶矩阵 (1)求A的特征值和特征向量; (2)求可逆矩阵P,使P—1AP为对角矩阵.
admin
2016-04-11
73
问题
设n阶矩阵
(1)求A的特征值和特征向量;
(2)求可逆矩阵P,使P
—1
AP为对角矩阵.
选项
答案
(1)1° 当b≠0时,|λE一A|=[*]=[λ一1一(n一1)b][λ一(1—b)]
n—1
,故A的特征值为λ
1
=1+(n一1)6,λ
2
=…=λ
n
=1—b. 对于λ
1
=1+(n一1)b,设对应的一个特征向量为ξ
1
,则 [*]ξ
1
=[1+(n一1)ξ
1
解得ξ
1
=(1,1,…,1)
T
,所以,属于λ
1
的全部特征向量为 kξ
1
=k(1,1,…,1)
T
,其中k为任意非零常数. 对于λ
2
=…=λ
n
=1—b,解齐次线性方程组[(1—b)E一A]x=0.由 [*] 解得基础解系为ξ
2
=(1,一1,0,…,0)
T
,ξ
3
=(1,0,一1,…,0)
T
,…,ξ
n
=(1,0,0,…,一1)
T
.故属于λ
2
=…=ξ
n
的全部特征向量为 k
2
ξ
2
+k
3
ξ
3
+…+k
n
ξ
n
,其中k
2
,k
3
,…,k
n
为不全为零的任意常数. 2° 当b=0时,A=E,A的特征值为λ
1
=λ
2
=…=λ
n
=1,任意n维非零列向量均是特征向量. (2)1° 当b≠0时,A有n个线性无关的特征向量,令矩阵P=[ξ
1
ξ
2
… ξ
n
],则有 P
—1
AP=diag(1+(n一1)b,1—b,…,1—b). 2。 当b=0时,A=E,对任意n阶可逆矩阵P,均有P
—1
AP=E.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/MAw4777K
0
考研数学一
相关试题推荐
设,求a,b的值。
设f(x)在[a.b]上连续,任取xi∈[a,b](i=1,2,…,n)任取ki>0(i=1,2,…,n),证明:存在ξ∈[a,b],使得k1f(x1)+k2f(x2)+…+knf(xn)=(k1+k2+…kn)f(ξ).
求函数y=ln(x+)的反函数。
设f(x)在[0,1]上二阶可导,且f(0)=f’(0)=f(1)=f’(1)=0,证明:方程f"(x)-f(x)=0在(0,1)内有根。
求r=4(1+cosθ)与θ=0,θ=π/2围成的图形绕极轴旋转一周所得旋转体的体积。
已知f(x)的定义域为(0,+∞),且满足xf(x)=1+∫0xu2f(u)du。求f(x)在定义域内的最小值
设A是n阶矩阵,证明:(Ⅰ)r(A)=1的充分必要条件是存在n阶非零列向量α,β,使得A=αβT;(Ⅱ)r(A)=1且tr(A)≠0,证明A可相似对角化.
设F(x)=,则F(x)的定义域是________.
设f(x)在(-∞,+∞)上有定义且是周期为2的奇函数,已知x∈(0,1)时,f(x)=lnx+cosx+ex+1,则当x∈[-4,-2]时,f(x)的表达式.
设f(x)=21nx,f[φ(x)]=1n(1-lnx),求φ(x)及其定义域.
随机试题
下列诗作,抒写新时期青年爱国深情的是()
简述退伙的效力。
当团体中所有的人都能达到目标时,个体才能达到目标是指( )。
结核预防性化疗使用的药物是
支气管哮喘最主要的护理诊断是
用力法求解图示结构(EI为常数),基本体系及基本未知量如图所示,柔度系数δ11为:
甲企业委托乙企业加工一批烟丝,甲企业提供原材料成本20万元,支付乙企业加工费3万元,乙企业按照本企业同类烟丝销售价格36万元代收代缴甲企业消费税10.8万元,甲企业将委托加工收回的烟丝的10%按照3.6万元平价销售给消费者;25%以12万元的价格销售给丙卷
社会主义新农村是()、政治建设、文化建设、社会建设和党的建设协调推进的新农村。
现行宪法规定,国家创办各种学校,普及中等义务教育。()
《齐民要术》(浙江大学2001年中国古代史真题)
最新回复
(
0
)