首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在闭区间[0,1]上连续,且∫01f(x)dx=0,∫01exf(x)dx=0,证明在开区间(0,1)内存在两个不同的ξ1与ξ2,使f(ξ1)=0,f(ξ2)=0.
设f(x)在闭区间[0,1]上连续,且∫01f(x)dx=0,∫01exf(x)dx=0,证明在开区间(0,1)内存在两个不同的ξ1与ξ2,使f(ξ1)=0,f(ξ2)=0.
admin
2018-12-21
67
问题
设f(x)在闭区间[0,1]上连续,且∫
0
1
f(x)dx=0,∫
0
1
e
x
f(x)dx=0,证明在开区间(0,1)内存在两个不同的ξ
1
与ξ
2
,使f(ξ
1
)=0,f(ξ
2
)=0.
选项
答案
令F(x)=∫
0
x
f(t)dt,有F
’
(x)=f(x),F(0)=0,F(1)=0,则0=∫
0
1
e
x
f(x)dx=∫
0
1
e
x
d[F(x)]=e
x
F(x)|
0
1
-∫
0
1
F(x)e
x
dx=-∫
0
1
>F(x)e
x
dx, 所以存在ξ∈(0,1),使F(ξ)e
ξ
=0.但e
ξ
≠0,所以F(ξ)=0.由于已有F(0)=0,F(1)=0, 所以根据罗尔定理知,存在ξ
1
∈(0,ξ),ξ
2
(ξ,1),使F
’
(ξ
1
)=0,F
’
(ξ
2
)=0,即f(ξ
1
)=0,f(ξ
2
)=0,其中ξ
1
∈(0,ξ),ξ
2
∈(ξ,1),证毕.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/LAj4777K
0
考研数学二
相关试题推荐
(2014年)一根长为1的细棒位于χ轴的区间[0,1]上,若其线密度ρ(χ)=-χ2+2χ+1,则该细棒的质心坐标=_______.
(2005年)已知3阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=(k为常数),且AB=O,求线性方程组Aχ=0的通解.
(2013年)设二次型f(χ1,χ2,χ3)=2(a1χ1+a2χ2+a3χ3)+(b1χ1+b2χ2+b3χ3)2,记(Ⅰ)证明二次型f对应的矩阵为2ααT+ββT.(Ⅱ)若α,β正交且均为单位向量,证明f在正交变换下的标准形为
(2003年)若矩阵A=相似于对角矩阵A,试确定常数a的值;并求可逆矩阵P,使P-1AP=A.
(2004年)设函数f(χ)在(-∞,+∞)上有定义,在区间[0,2]上,f(χ)=χ(χ2-4),若对任意的χ都满足f(χ)=kf(χ+2),其中k为常数.(Ⅰ)写出f(χ)在[-2,0]上的表达式;(Ⅱ)问k为何值时,f(χ)在χ=
(2013年)设奇函数f(χ)在[-1,1]上具有2阶导数,且f(1)=1.证明:(Ⅰ)存在ξ∈(0,1),使得f′(ξ)=1;(Ⅱ)存在η∈(-1,1),使得f〞(η)+f′(η)=1.
(2001年)一个半球体状的雪堆,其体积融化的速率与半球面面积S成正比,比例常数K>0.假设在融化过程中雪堆始终保持半球体状,已知半径为r0的雪堆在开始融化的3小时内,融化了其体积的,问雪堆全部融化需要多少小时?
随机试题
配制好的NaOH需贮存于()中。
与全身气虚关系最密切的是
楼梯平台处的净空高度最低不应小于( )m。
执业理财规划师违反职业道德规范,情节较为严重,但尚未给客户造成重大损失,行业自律机构的制裁措施应为()。
根据民事诉讼法律制度的规定,下列关于当事人的诉讼权利能力和诉讼行为能力的表述中,不正确的是()。
大气污染是指大气中的污染物或由它转化成的二次污染物的浓度达到了有害程度的现象。造成大气污染的主要物质是()。
不可能所有的湖南人都喜欢吃辣椒。以下哪项判断的含义与上述判断最为接近?()
简述公民民事权利能力的概念和特征。
Atthemoment,therearetworeliablewaystomakeelectricityfromsunlight.【F1】Youcanuseapanelofsolarcellstocreateth
OnasummereveningIwascaughtinthecrossfireofduelingwoodthrushes,eachdefendinghisportionoftheforest.Theirchos
最新回复
(
0
)