首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2011年] 设A为4×3矩阵,η1,η2,η3是非齐次线性方程组AX=β的3个线性无关的解,k1,k2为任意常数,则AX=β的通解为( ).
[2011年] 设A为4×3矩阵,η1,η2,η3是非齐次线性方程组AX=β的3个线性无关的解,k1,k2为任意常数,则AX=β的通解为( ).
admin
2019-04-15
67
问题
[2011年] 设A为4×3矩阵,η
1
,η
2
,η
3
是非齐次线性方程组AX=β的3个线性无关的解,k
1
,k
2
为任意常数,则AX=β的通解为( ).
选项
A、(η
2
+η
3
)/2+k
1
(η
2
-η
1
)
B、(η
2
-η
3
)/2+k
1
(η
2
-η
1
)
C、(η
2
+η
3
)/2+k
1
(η
2
-η
1
)+k
2
(η
3
-η
1
)
D、(η
2
-η
3
)/2+k
1
(η
2
-η
1
)+k
2
(η
3
-η
1
)
答案
C
解析
解一 仅(C)入选.因n元非齐次线性方程组AX=b的线性无关的解向量最多的个数为n-秩(A)+1,故3-秩(A)+1≥3,即秩(A)≤1.又秩(A)≥1(如秩(A)=0,则A=0与AX=β≠0矛盾),故秩(A)=1,所以AX=0的一个基础解系含n-秩(A)=3=1-2个解向量,而η
3
-η
1
,η
2
-η
1
均为AX=0的非零解,因而它们为AX=0的基础解系.又(η
2
+η
3
)/2中的系数1/2+1/2=1.由命题2.4.4.1知,(η
2
+η
3
)/1为AX=β的一特解.于是AX=β的通解为
(η
2
+η
3
)/2+k
1
(η
2
-η
1
)+k
2
(η
3
-η
1
).
解二 由非齐次线性方程组AX=B通解的结构(该方程组的一特解加上对应齐次线性方程组AX=0的基础解系)可分别排除选项(A)、(B)、(D).事实上,(B)、(D)中的
为AX=0的解,不是AX=B的特解,可排除(B)、(D).又因AX=0的解η
2
-η
1
,η
3
-η
1
线性无关,故AX=0的基础解系至少包含2个解向量,从而排除(A).仅(C)入选.
转载请注明原文地址:https://www.kaotiyun.com/show/L7P4777K
0
考研数学三
相关试题推荐
设函数f(x)=则在点x=0处f(x)().
设A是m×n阶矩阵,若ATA=O,证明:A=O.
f(x)在[一1,1]上连续,则x=0是函数g(x)=的().
判断级数的敛散性.
两台同样的自动记录仪,每台无故障工作的时间服从参数为5的指数分布。首先开动其中一台,当其发生故障时停用,而另一台自行开动,试求两台记录仪无故障工作的总时间T的概率密度。
设随机变量X与Y均服从正态分布N(μ,σ2),则P{max(X,Y)>μ}一P{min(X,Y)<μ}=________。
设A,B,C为随机事件,且A发生必导致B与C最多有一个发生,则有()
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0.(1)证明:α1,α2,…,αn线性无关;(2)求A的特征值与特征向量.
(2016年)求幂级数的收敛域及和函数。
随机试题
“攻其不备,出其不意”的军事原则出自________________________。
不属于肝硬化门静脉高压症表现的是
荆芥常用的炮制方法是
缝合伤口3~5天后患者出现高热,局部红肿宜
A.阻断D1、D2受体B.使突触间隙的NA浓度下降C.阻断N胆碱受体D.对心肌有奎尼丁样作用E.阻断中枢5-HT受体氯丙嗪
通过加入何种试剂可使季铵型水溶性生物碱生成水不溶性的盐类等沉淀析出而与水溶性杂质分离
A.山药丸B.木瓜丸C.六味地黄丸D.苏合香丸E.牛黄解毒丸内含乌头类药物的中成药是()。
下列属于块材类地面的有()。
Inapurelybiologicalsense,fearbeginswiththebody’ssystemforreactingtothingsthatcanharmus—theso-calledfight-or-
A、Becausehehadbeeninvitedbyafriend.B、Becausehecouldn’tfindagoodendforhisstory.C、Becausehehadnothingtodoi
最新回复
(
0
)