首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设非齐次方程组AX=β有解ξ1,ξ2,ξ3,其中ξ1=(1,2,3,4)T,ξ2+ξ3=(0,1,2,3)T,r(A)=3.求通解.
设非齐次方程组AX=β有解ξ1,ξ2,ξ3,其中ξ1=(1,2,3,4)T,ξ2+ξ3=(0,1,2,3)T,r(A)=3.求通解.
admin
2017-08-07
40
问题
设非齐次方程组AX=β有解ξ
1
,ξ
2
,ξ
3
,其中ξ
1
=(1,2,3,4)
T
,ξ
2
+ξ
3
=(0,1,2,3)
T
,r(A)=3.求通解.
选项
答案
ξ
1
是AX=β的一个特解,只用再找AX=0的基础解系.从解是4维向量知,AX=β的未知数个数n=4.r(A)=3,于是,它的AX=0的基础解系由1个非零解构成. 由解的性质,2ξ
1
一(ξ
2
+ξ
3
)=(2,3,4,5)
T
是AX=0的解.于是,AX=β的通解为 (1,2,3,4)
T
+c(2,3,4,5)
T
,c可取任何常数.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Kzr4777K
0
考研数学一
相关试题推荐
设总体X的分布函数为F(x),(X1,X2,…,Xn)是取自此总体的一个子样,若F(x)的二阶矩阵存在,为子样均值,试证(Xi-)与(Xj-)的相关系数j=1,2,…,n.
设n阶矩阵A非奇异(n≥2),A*是矩阵A的伴随矩阵,则().
设X1,X2,…,Xn为来自总体N(μ,σ2)的简体随机样本,为样本均值,记:则服从自由度为n-1的t分布的随机变量是().
(1998年试题,九)设y=f(x)是区间[0,1]上的任一非负连续函数.又设f(x)在区间(0,1)内可导,且证明(1)中的x0是唯一的.
(1998年试题,九)设y=f(x)是区间[0,1]上的任一非负连续函数.试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的曲边梯形面积;
(2007年试题,23)设二维随机变量(X,Y)的概率密度为求Z=X+Y的概率密度.
(2012年试题,三)已知二次型f(x1,x2,x3)=xT(ATA)x的秩为2.求正交变换x=Qy将f化为标准形.
(1997年试题七)设B是秩为2的5×4矩阵,α1=[1,1,2,3]T,α2=[一1,1,4,一1]T,α3=[5,一1,一8,9]T,是齐次线性方程组Bx=0的解向量,求Bx=0的解空间的一个标准正交基.
(1997年试题,三)在某一人群中推广新技术是通过其中已掌握新技术的人进行的.设该人群的总人数为N,在t=0时刻已掌握新技术的人数为x0,在任意时刻t已掌握新技术的人数为x(t)(将x(t)视为连续可微变量),其变化率与已掌握新技术人数之积成正比,比例常数
某工厂每天分3个班生产,事件Ai表示第i班超额完成生产任务(i=1,2,3),则至少有两个班超额完成任务的事件可以表示为().
随机试题
下列疾病中需执行呼吸道隔离的是
以下关于坚持依宪治国、依宪执政理解正确的是:()
某女士,26岁,妊娠35周,无痛性阴道出血4小时,比月经量少。B超结果为部分性前置胎盘。检查:血压110/80mmHg,无宫缩,胎心率140次/分。此时处理原则应是( )。
1998年7月3日,“建立和完善以()为主的多层次城镇住房供应体系”被确定为住房体制改革的基本方向,个人住房贷款业务逐步进入快速发展阶段。
有限责任公司成立时,股东以土地使用权出资的,应当办理哪些手续?()
在宿舍楼的后面,停放着一部烂汽车,大院里的孩子们每当晚上7点多,便攀上车厢蹦跳,嘭嘭之声震耳欲聋,大人们越管,众孩童蹦得越欢,见者无奈。这天,一个人对孩子们说:“小朋友们,今天我们比赛,蹦得最响的奖玩具手枪一支。”众童欢呼雀跃,争相蹦跳,优者果然得奖。次日
火车和汽车车厢基本上是金属封闭结构,在车厢里听不清半导体收音机的广播,却可以通过手机和外界通话,原因是()。
BSP的过程分类中,下列()过程属于计划和控制类。
Severalofthejobcandidateshave______qualifications,includingdegreesfromIvyLeaguecollegesandoverseasexperience.
(1)Dr.LeonardBaileyturns74inAugust,butaschiefofsurgeryforLomaLindaUniversity’sChildren’sHospital,hestillput
最新回复
(
0
)