首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3×3矩阵,α1,α2,α3是三维列向量,且线性无关,已知 Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2,(1)证明:Aα1,Aα2,Aα3线性无关; (2)求|A|.
设A是3×3矩阵,α1,α2,α3是三维列向量,且线性无关,已知 Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2,(1)证明:Aα1,Aα2,Aα3线性无关; (2)求|A|.
admin
2019-08-12
76
问题
设A是3×3矩阵,α
1
,α
2
,α
3
是三维列向量,且线性无关,已知 Aα
1
=α
2
+α
3
,Aα
2
=α
1
+α
3
,Aα
3
=α
1
+α
2
,(1)证明:Aα
1
,Aα
2
,Aα
3
线性无关; (2)求|A|.
选项
答案
(1)[Aα
1
,Aα
2
,Aα
3
]=[α
2
+α
3
,α
1
+α
3
,α
1
+α
2
]=[α
1
,α
2
,α
3
][*] [α
1
,α
2
,α
3
]C,其中|C|=[*]=2≠0,C是可逆阵. 故Aα
1
,Aα
2
,Aα
3
和α
1
,α
2
,α
3
是等价向量组,故Aα
1
,Aα
2
,Aα
3
线性无关. (2)[Aα
1
,Aα
2
,Aα
3
]=A[α
1
,α
2
,α
3
]=[α
1
,α
2
,α
3
][*] 两边取行列式,得[*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/KdN4777K
0
考研数学二
相关试题推荐
设a<b,证明:不等式
设f(x),g(x)在[a,b]k-阶可导,g"(x)≠0,f(a)=f(b)=g(n)=g(b)=0,证明:在(a,b)内至少存在一点ξ,使
设f(x),g(x)在[a,b]k-阶可导,g"(x)≠0,f(a)=f(b)=g(n)=g(b)=0,证明:在(a,b)内,g(x)≠0;
考虑二元函数f(x,y)的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导
已知线性方程组(I)及线性方程组(Ⅱ)的基础解系ξ1=[一3,7,2,0]T,ξ2=[一1,一2,0,1]T.求方程组(Ⅰ)和(Ⅱ)的公共解.
已知A=可对角化,求可逆矩阵P及对角矩阵∧,使P-1AP=A.
已知二次型f(x1,x2,x3)=4x22一3x32+4x1x2—4x1x3+8x2x3.写出二次型f的矩阵表达式;
设c为常数,存在且不为0,求常数c的值并求极限值。
二次型f(x1,x2,x3)=(x1+2x2+a3x3)(x1+5x2+b3x3)的合同规范形为______。
已知f(x)在x=0的某个邻域内连续,且f(0)=0,=2,则在点x=0处f(x)()
随机试题
基金监管的基本原则有()。Ⅰ.保障投资人利益原则Ⅱ.适度监管原则Ⅲ.高效监管原则Ⅳ.审慎监管原则
以下是某课堂的教学实录片段。Step1(12min)(Theteacherhadavolleyballinhand.Theteacheraskedstudentsquestionsquicklyandwr
文本
A.冲和膏B.玉露膏C.阳和膏D.回阳玉龙膏E.生肌白玉膏治疗疮疡阳证,应首选
汉代《春秋》决狱评述
A.条件(1)充分,但条件(2)不充分.B.条件(2)充分,但条件(1)不充分.C.条件(1)和条件(2)单独都不充分,但条件(1)和条件(2)联合起来充分.D.条件(1)充分,条件(2)也充分.E.条件(1)和条件(2)单独都不充分,条件(1)和
极限()
假定“出生日期”为日期型内存变量,下列表达式中结果不是日期型的是______。
软件生命周期中所花费用最多的阶段是______。
OurculturehascausedmostAmericanstoassumenotonlythatourlanguageisuniversalbutthatthegesturesweuseareunderst
最新回复
(
0
)