首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,特征值为λ1=λ2=1,λ3=2,其对应的线性无关的特征向量为α1,α2,α3,令P1=(α1-α3,α2+α3,α3),则P1﹣1A*P1=( ).
设A为三阶矩阵,特征值为λ1=λ2=1,λ3=2,其对应的线性无关的特征向量为α1,α2,α3,令P1=(α1-α3,α2+α3,α3),则P1﹣1A*P1=( ).
admin
2019-06-06
63
问题
设A为三阶矩阵,特征值为λ
1
=λ
2
=1,λ
3
=2,其对应的线性无关的特征向量为α
1
,α
2
,α
3
,令P
1
=(α
1
-α
3
,α
2
+α
3
,α
3
),则P
1
﹣1
A
*
P
1
=( ).
选项
A、
B、
C、
D、
答案
A
解析
A
*
的特征值为2,2,1,其对应的线性无关的特征向量为α
1
,α
23
,α
3
,令P=(α
1
,α
2
,α
3
),则P
﹣1
A
*
P=
,
选(A).
转载请注明原文地址:https://www.kaotiyun.com/show/KQJ4777K
0
考研数学三
相关试题推荐
设连续型随机变量X的分布函数为F(x)=(1)求常数A,B;(2)求X的密度函数f(x);(3)求P(X>).
设X,Y为两个随机变量,E(X)=E(Y)=1,D(X)=9,D(Y)=1,且ρXY=,则E(X-2Y+3)=______.
(Ⅰ)叙述二元函数z=f(x,y)在点(x0,y0)处可微及微分的定义;(Ⅱ)证明下述可微的必要条件定理:设z=f(x,y)在点(x0,y0)处可微,则f’x(x0,y0)与f’y(x0,y0)都存在,且=f’x(x0,y0)△x+f’y(x0,y0)
设向量组(i)α1=(1,2,一1)T,α2=(1,3,一1)T,α31=(一1,0,a一2)T,(ii)β1=(一1,一2,3)T,β2=(一2,一4,5)T,β3=(1,b,一1)T.设A=(α1,α2,α3),B=(β1,β2,β3).问:(Ⅰ
设A是3阶实对称矩阵,λ1,λ2,λ3是A的三个特征值,且满足a≥λ1≥λ2≥λ3≥b,若A一μE是正定阵,则参数μ应满足()
设A=,E是3阶单位阵.(Ⅰ)求方程组Ax=0的基础解系和通解;(Ⅱ)设B4×3,求满足AB=E的所有B.
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α1+2α2+…+(n一1)αn-11=0,b=α1+α2+…+αn.求方程组AX=b的通解.
电话公司有300台分机,每台分机有6%的时间处于与外线通话状态,设每台分机是否处于通话状态相互独立,用中心极限定理估计至少安装多少条外线才能保证每台分机使用外线不必等候的概率不低于0.95?
求极限
随机试题
对实验动物进行解剖不正确的处理是
应用后可导致胎儿骨骼和牙齿发育不正常,禁止应用于妊娠期妇女的药物是
患者,男性,62岁。因颈部蜂窝织炎入院。患者颈部肿胀明显,观察中应特别注意
专用发票适用于()。
“王老吉”凉茶,易拉罐装,含有水、白砂糖、仙草、布渣叶、菊花、金银花、夏枯草、甘草等成分,有清热去火的功效
儿童因为长期精神压抑或紧张而导致厌食、自闭、孤独等症状,这是由于()。
Surveysshowthatconsumerspendingon______junkfoodincreasesduringeconomicrecessions.
•Readthearticlebelowaboutmonopoly.•ChoosethecorrectwordtofilleachgapfromA,B.CorD.•Foreachquestion(21
Thewaythatpeoplespendtheirmoney,andtheobjectsonwhichtheyspendit,arethelastareaswherefreechoiceandindividu
中国是一个有56个民族的大国。不同的民族有不同的婚俗。中国传统婚礼包括6个必备步骤,即说媒、定亲、聘礼(betrothalgifts)、迎娶、拜堂(三鞠躬)、喝交杯酒(wedlockwine)。如今典型的中国婚礼如下进行:新人订婚后,接下来就是挑选吉(
最新回复
(
0
)