首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α1+2α2+…+(n一1)αn-11=0,b=α1+α2+…+αn. 求方程组AX=b的通解.
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α1+2α2+…+(n一1)αn-11=0,b=α1+α2+…+αn. 求方程组AX=b的通解.
admin
2018-04-15
93
问题
设n阶矩阵A=(α
1
,α
2
,…,α
n
)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α
1
+2α
2
+…+(n一1)α
n-1
1=0,b=α
1
+α
2
+…+α
n
.
求方程组AX=b的通解.
选项
答案
因为α
1
+2α
2
+…+(n一1)α
n-1
=0,所以α
1
+2α
2
+…+(n一1)α
n+1
+0α
n
=0,即齐次线性方程组AX=0有基础解系ξ=(1,2,…,n=1,0)
T
, 又因为b=α
1
+α
2
+…+α
n
,所以方程组AX=b有特解η=(1,1,…,1)
T
, 故方程组AX=b的通解为 kξ+η=k(1,2,…,n一1,0)
T
+(1,1,…,1)
T
(k为任意常数).
解析
转载请注明原文地址:https://www.kaotiyun.com/show/FgX4777K
0
考研数学三
相关试题推荐
某厂家生产的一种产品同时在两个市场销售,售价分别为p1和p2;销售量分别为q1和q2;需求函数分别为q1=24—0.2p1,q2=10-0.5p2总成本函数为C=35+40(q1+q2)试问:厂家如何确定两个市场的售价,能使其获得总利润最大?最大利
设抛物线y=x2与它的两条相互垂直的切线所围成的平面图形的面积为S,其中一条切线与抛物线相切于点A(a,a2)(a>0).(Ⅰ)求S=S(a)的表达式;(Ⅱ)当口取何值时,面积S(a)最小?
设f(x)为[一a,a]上的连续的偶函数且f(x)>0,令F(x)=|x—f|f(t)dt.(Ⅰ)证明:F’(x)单调增加.(Ⅱ)当x取何值时,F(x)取最小值?(Ⅲ)当F(x6)的最小值为f(a)一a2一1时,求函数f(x).
设三阶矩阵A的特征值为一2,0,2,则下列结论不正确的是().
已知实二次型f(x1,x2,x2)=xTAX的矩阵A满足,且ξ1=(1,2,1)T,ξ2=(1,-1,1)T是齐次线性方程组Ax=0一个基础解系.用正交变换将二次型f化为标准形,写出所用的正交变换和所得的标准形;
计算二重积分其中D={(x,y)|y≥0,x2+y2≥1,x2+y2-2x≤0).
设二维随机变量(X,Y)的概率密度为记U=max{X,Y},V=min{X,Y}.求E(UV).
已知α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,那么下列向量α1-α2,α1+α2-2α3,(α2-α1),α1-3α2+2α3中能导出方程组Ax=0解的向量共有()
设函数Fn(x)=∫0xf(t)dt一x∈[0,+∞),其中n=1,2,3,…为任意自然数,f(x)为[0,+∞)上正值连续函数.求证:(Ⅰ)Fn(x)在(0,+∞)存在唯一零点xn;
设f(x)在[0,1]上连续,且则f(x)=_________.
随机试题
试述大陆法系的基本特点。
巨大胎儿是指胎儿体重超过
女,24岁。发热l天后出现肉眼血尿,无尿急、尿频、尿痛。尿常规:蛋白(+),红细胞30~40个/HP,白细胞lO~20个/HP。为明确诊断,应进行的检查是()
一患者拟在局麻下拔除,口内法进行下牙槽神经阻滞麻醉后患者很快出现暂时性牙关紧闭,这可能是因为
海关在审查进口货物完税价格时,不应成为影响成交价格因素的是()。
在体育教学中,游戏是实施小学体育课程的()和实现课程目标的有效手段。
教师由“教书匠”转变为“教育家”的主要条件是()。
厅(局)级正职的警衔为一级警督至二级警监。( )
某企业有甲、乙、丙三个仓库,都在一条直线上,之间分别相距1千米、3千米,三个仓库里面分别存放货物5吨、4吨、2吨。如果把所有的货物集中到一个仓库,每吨货物每千米运费是90元,请问把货物放在哪个仓库最省钱?
巴黎公社是无产阶级革命的一次伟大尝试,巴黎公社()。
最新回复
(
0
)