首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2005年] 已知三阶矩阵A的第1行是(a,b,c),a,b,c不全为零,矩阵B=(k为常数),且AB=O.求线性方程组AX=0的通解.
[2005年] 已知三阶矩阵A的第1行是(a,b,c),a,b,c不全为零,矩阵B=(k为常数),且AB=O.求线性方程组AX=0的通解.
admin
2019-04-08
45
问题
[2005年] 已知三阶矩阵A的第1行是(a,b,c),a,b,c不全为零,矩阵B=
(k为常数),且AB=O.求线性方程组AX=0的通解.
选项
答案
对题设AB=O要有两种思路:一是秩(A)+秩(B)≤n;另一是B的列向量都是AX=0的解向量,据此可得到下列解法. (1)如k≠9,则秩(B)=2,因而由秩(A)+秩(B)≤3得到秩(A)≤1.显然秩(A)≥1,故秩(A)=1,于是AX=0的一个基础解系含n一秩(A)=3—1=2个解向量.由AB=0知α
1
=[1,2,3]
T
,α
2
=[3,6,k]
T
为AX=0的两个线性无关的解向量,于是其通解为k
1
α
1
+k
2
α
2
=k
1
[1,2,3]
T
+k
2
[3,6,k]
T
,k
1
,k
2
为任意两个常数. (2)如k=9,则秩(B)=1,于是秩(A)≤3一秩(B)=2.因而秩(A)=1或秩(A)=2. 当秩(A)=1时,则A的第2,3两行均与第1行成比例,故Ax=0的等价方程组为ax
1
+bx
2
+cx
3
=0,不妨设c≠0,则 [*] 其一个基础解系含2个解向量β
1
=[1,0,一a/c]
T
,β
2
=[0,1,一6/c]
T
.为方便计,不妨取为 β
1
=[c,0,一a]
T
,β
2
=[0,c,一6]
T
,其通解为l
1
β
1
+l
2
β
2
,l
1
,l
2
为任意常数. 当秩(A)=2时,则AX=0的一个基础解系只含n一秩(A)=3—2=1个解向量.此解向量γ可取B中任意一个列向量,不妨令γ=[1,2,3]
T
,则其通解为tγ,其中t为任意常数.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/KD04777K
0
考研数学一
相关试题推荐
设矩阵()
已知非齐次线性方程组有三个线性无关的解。(Ⅰ)证明方程组系数矩阵A的秩r(A)=2;(Ⅱ)求a,b的值及方程组的通解。
已知方程组无解,则a=______。
设矩阵A=可逆,向量α=是矩阵A*的特征向量,其中A*是A的伴随矩阵,求a,b的值.
A,B均为n阶非零矩阵,且A2+A=0,B2+B=0,证明:λ=-1必是矩阵A与B的特征值.若AB=BA=0,α与β分别是A与B属于特征值λ=-1的特征向量,证明:向量组α,β线性无关.
设已知线性方程组AX=β有解不唯一.试求:(1)a的值;(2)正交矩阵Q,使QTAQ为对角矩阵.
在R4中求一个单位向量,使它与α1=(1,1,-1,1)T,α2=(1,-1,-1,1)T,α3=(2,1,1,3)T都正交.
设向量组a1,a2,…,am线性相关,且a1≠0,证明存在某个向量ak(2≤k≤m),使ak能由a1,a2,…,ak-1线性表示。
讨论方程组的解的情况,在方程组有解时求出其解,其中a,b为常数.
随机试题
下列器官肥大时不伴细胞增生的是()。
A.生理层次B.心理层次C.社会文化层次D.技术层次E.专业层次在高原长期居住的人不发生高原缺氧反应,这属于哪一层次的适应
麻疹疹回期首选方剂是麻毒闭肺首选方剂应是
(2007年)微分方程y"-4y=4的通解是()。(C1、C2为任意常数)
城市规划行为合法的条件包括()。
在《中华人民共和国发票管理办法》中,()是指在购销商品、提供或者接受服务以及从事其他经营活动中,开具、收取的收付款凭证。
纳税人停业期限不得超过1年,超过1年的必须恢复经营。()
如图所示,甲、乙两圆面积之和是丙圆面积的五分之三,甲圆内阴影部分面积占甲圆面积的三分之一,乙圆内阴影部分面积占乙圆面积的二分之一,丙圆内阴影部分面积占丙圆面积的四分之一。那么甲、乙两圆面积之比为:
设f(x)=xsinx+cosx,下列命题中正确的是________。
A、ItistheprimaryindustryinTasmania.B、Ittakesawaysomeoftourists.C、ItisstrictlybannedinTasmania.D、Itisclosely
最新回复
(
0
)