首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知非齐次线性方程组 有三个线性无关的解。 (Ⅰ)证明方程组系数矩阵A的秩r(A)=2; (Ⅱ)求a,b的值及方程组的通解。
已知非齐次线性方程组 有三个线性无关的解。 (Ⅰ)证明方程组系数矩阵A的秩r(A)=2; (Ⅱ)求a,b的值及方程组的通解。
admin
2018-04-08
61
问题
已知非齐次线性方程组
有三个线性无关的解。
(Ⅰ)证明方程组系数矩阵A的秩r(A)=2;
(Ⅱ)求a,b的值及方程组的通解。
选项
答案
(Ⅰ)设α
1
,α
2
,α
3
是方程组Ax=β的三个线性无关的解,其中 [*] 则α
1
-α
2
,α
1
-α
3
是对应齐次线性方程组Ax=0的解,且线性无关(否则,易推出α
1
,α
2
,α
3
线性相关,矛盾)。所以n-r(A)≥2,即4-r(A)≥2=>r(A)≤2。又矩阵A中有一个二阶子式[*]=-1≠0,所以r(A)≥2。因此r(A)=2。 (Ⅱ)因为 [*] 又r(A)=2,则 [*] 对原方程组的增广矩阵[*]施行初等行变换, [*] 故原方程组与方程组 [*] 同解。 取x
3
,x
4
为自由变量,则 [*] 故所求通解为 [*] k
1
,k
2
为任意常数。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/4lr4777K
0
考研数学一
相关试题推荐
已知α=[1,3,2]T,β=[1,一1,一2]T,A=E一αβT,则A的最大特征值为__________.
设A是m×n矩阵,证明:存在非零的n×s矩阵B,使得AB=0的充要条件是r(A)<n.
设A是n阶可逆阵,将A的第i行和第j行对换得到的矩阵记为B.证明:B可逆,并推导A-1和B-1的关系.
设A是n阶矩阵,λ是A的r重特征根,A的对应于λ的线性无关的特征向量是k个,则k满足__________.
设在区间[a,b]上f(x)>0,f’(x)<0,f"(x)>0.令,S2=f(b)(b一a),,则
设在[0,+∞)上函数f(x)有连续导数,且f’(x)≥k>0,f(0)<0,证明f(x)在(0,+∞)内有且仅有一个零点.
求微分方程y"-ay’=ebx(a,b为实常数,且a≠0,b≠0)的通解。
设随机变量X在[0,π]上服从均匀分布,求(1)Y=sinX的概率密度;(2)E(Y)和D(Y)。
已知总体X的概率密度(λ>0),X1,X2,X3,…,Xn是来自总体X的简单随机样本,Y=X2。(Ⅰ)求Y的数学期望E(Y);(Ⅱ)求λ的矩估计量和最大似然估计量。
设f(x)连续,且求φ’(x).
随机试题
为什么必须坚持以经济建设为中心?
黑暗来了,我的眼睛失掉了一切。于是大门内亮起了灯光。灯光并不曾照亮什么,反而增加了我心上的黑暗。我只得失望地走了。我向着来时的路回去。已经走了四五步,我忽然掉转头,再看那个建筑物。依旧是阴暗中一线微光。我好像看见一个盛满希望的水碗一下子就落在地上打碎了一般
女性,5岁,因发热、头痛、呕吐2天于2月3日入院。体检:神志恍惚,口唇单纯疱疹,皮肤上有大小不等的瘀斑,少数融合成片,本病例的诊断应首先考虑
基金销售机构应当建立科学合理的方法,设置必要的标准和流程,保证基金销售适用性的实施。这属于基金销售适用性的()原则。
根据《行政处罚法》的规定,下列情形中可以导致行政处罚无效的有()。
下列不属于把客户按外在属性分类的是()。
透雕
“洒狗血”是戏曲演员的一种()。
古罗马教育家昆体良主张,在雄辩家培养中居于首要位置的是()。
攻击者采用某种手段,使用户访问某网站时获得一个其他网站的IP地址,从而将用户的访问引导到其他网站,这种攻击手段称为()。
最新回复
(
0
)