首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,λ1,λ2,λ3是A的三个不同特征值,对应的特征向量为α1,α2,α3,令β=α1+α2+α3. (1)证明β,Aβ,A2β线性无关; (2)若A3β=Aβ,求秩r(A—E)及行列式|A+2E|.
设A为3阶矩阵,λ1,λ2,λ3是A的三个不同特征值,对应的特征向量为α1,α2,α3,令β=α1+α2+α3. (1)证明β,Aβ,A2β线性无关; (2)若A3β=Aβ,求秩r(A—E)及行列式|A+2E|.
admin
2018-09-20
108
问题
设A为3阶矩阵,λ
1
,λ
2
,λ
3
是A的三个不同特征值,对应的特征向量为α
1
,α
2
,α
3
,令β=α
1
+α
2
+α
3
.
(1)证明β,Aβ,A
2
β线性无关;
(2)若A
3
β=Aβ,求秩r(A—E)及行列式|A+2E|.
选项
答案
(1)设 k
1
β+k
2
Aβ+k
3
A
2
β=0, ① 由题设Aα
i
=λ
i
α
i
(i=1,2,3),于是 Aβ=Aα
1
+Aα
2
+Aα
3
=λ
1
α
1
+λ
2
α
2
+λ
3
α
3
, A
2
β=λ
1
2
α
1
+λ
2
2
α
2
+λ
3
2
α
3
, 代人①式整理得 (k
1
+k
2
λ
1
+k
3
λ
1
2
)α
1
+(k
1
+k
2
λ
2
+k
3
λ
2
2
)α
2
+(k
1
+k
2
λ
3
+k
3
λ
3
2
)α
3
=0. 因为α
1
,α
2
,α
3
是三个不同特征值对应的特征向量,必线性无关,于是有 [*] 其系数行列式[*]≠0,必有k
1
=k
2
=k
3
=0,故β,Aβ,A
2
β线性无关. (2)由A
3
β=Aβ有 A[β,Aβ,A
2
β]=[Aβ,A
2
β,A
2
β]=[Aβ,A
2
β,Aβ]=[β,Aβ,A
2
β][*] 令P=[β,Aβ,A
2
β],则P可逆,且 [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/KCW4777K
0
考研数学三
相关试题推荐
设0<x<1,求证:xn(1-x)<,其中n为自然数.
将一颗骰子连续重复掷4次,以X表示4次掷出的点数之和,则根据切比雪夫不等式,P{10<X<18}≥_________.
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α1+2α2…+(n一1)αn一1=0,b=α1+α2+…+αn.证明方程组AX=b有无穷多个解;
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
设f(x)在区间[a,b]上二阶可导且f"(x)≥0.证明:
求的间断点并判断其类型.
一台设备由三大部件构成,在设备运转过程中各部件需要调整的概率分别为0.1,0.2,0.3,假设各部件的状态相互独立,以X表示同时需要调整的部件数,求E(X),D(X).
设二次型f(x1,x2,x3)=XTAX,A的主对角线上元素之和为3,又AB+B=0,其中求正交变换X=QY将二次型化为标准形;
求极限
随机试题
下列哪项不是瘾疹的病因病机()
急慢性白血病最主要的区别是
在执行程序中,谢大柱可否主持调解,为什么?E市K区人民法院是否能以妨害民事诉讼秩序为由,对吴小明采取强制措施,为什么?
定势对迁移的影响表现为________和________两种。
人的身心发腱的源泉和动力在于()。
公安机关要有力地防范和打击敌对势力、敌对分子的破坏活动,积极防范和严厉打击各种严重刑事犯罪,尤其是经济领域的严重犯罪活动。()
科学家发现,儿童时期不接触细菌和病菌,是5岁以下人群糖尿病病例近年来急剧增加的主要原因之一。而那些生活在农村的孩子由于更早接触到带菌的物质,有更多机会与宠物相处,患过敏症、哮喘和湿疹等疾病的几率反而很低。所以,将细菌消灭得过于彻底的环境可能反而会给儿童的健
证明:当χ>1时,
Anindustrialsociety,especiallyoneascentralizedandconcentratedasthatofBritain,isheavilydependentoncertainessent
Americanseat_______________(两倍多的蛋白质)theyactuallyneedeveryday.
最新回复
(
0
)