首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求微分方程xdy+(x-2y)dx=0的一个解y=y(x),使得由曲线y=y(x)与直线x=1,x=2以及x轴所围成的平面图形绕x轴旋转一周的旋转体的体积最小。
求微分方程xdy+(x-2y)dx=0的一个解y=y(x),使得由曲线y=y(x)与直线x=1,x=2以及x轴所围成的平面图形绕x轴旋转一周的旋转体的体积最小。
admin
2021-01-19
51
问题
求微分方程xdy+(x-2y)dx=0的一个解y=y(x),使得由曲线y=y(x)与直线x=1,x=2以及x轴所围成的平面图形绕x轴旋转一周的旋转体的体积最小。
选项
答案
原方程可化为:[*]y=-1。所以 y=e
∫2/xdx
[∫-e
-∫2/xdx
dx+C]=x
2
([*]+C)=x+Cx
2
。 由曲线方程y=x+Cx
2
与直线x=1,x=2及x轴所围成的平面图形围绕x轴旋转一周的旋转体体积为V’(C)=∫
1
2
π(x+Cx
2
)
2
dx=π([*])。 令V’(C)=π([*])=0,得C=-75/124。 又V"’(C)=62/5π>0,故C=-75/124为唯一极小值点,也是最小值点,于是得 y(x)=x-[*]x
2
。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/JV84777K
0
考研数学二
相关试题推荐
设A是三阶实对称矩阵,r(A)=1,A2-3A=O,设(1,1,-1)T为A的非零特征值对应的特征向量.(1)求A的特征值;(2)求矩阵A.
[*]
已知α1,α2,…,αs线性无关,β可由α1,α2,…,αs线性表出,且表出式的系数全不为零,证明:α1,α2,…,αs,β中任意s个向量线性无关.
二次型f(x1,x2,x3)=5x12+5x22+cx32一2x1x2+6x1x3—6x2x3的秩为2。求参数c及此二次型对应矩阵的特征值;
设A为三阶实对称矩阵,其特征值为λ1=0,λ2=λ3=1,α1,α2为A的两个不同特征向量,且A(α1+α2)=α2.(Ⅰ)证明:α1,α2正交.(Ⅱ)求AX=α2的通解.
在直角坐标系xOy中,区域令x=rcosθ,y=rsinθ,则直角坐标系中的二重积分可化为极坐标系(,一,θ)中的累次积分().
设A为三阶非零方阵,而且AB=0,则t=().
已知数列
(2008年)设n元线性方程组Aχ=b,其中(Ⅰ)证明行列式|A|=(n+1)an;(Ⅱ)当a为何值时,该方程组有唯一的解,并在此时求χ1;(Ⅲ)当a为何值时,该方程组有无穷多解,并在此时求其通解.
(1997年试题,四)λ取何值时,方程组无解?有唯一解或有无穷多解?并在有无穷多解时写出方程组的通解.
随机试题
下列表达式计算结果为日期类型的是( )。
何谓生理盲点?有何临床意义?
A.X线片可见蒂状、鹿角状或血丘状骨性凸起B.X线片可见“日光射线”现象C.X线片可见Codman三角D.X线片可见葱皮状骨膜反应E.X线片可见肥皂泡样骨质破坏阴影骨软骨瘤病人可能出现
“符合平滑肌肉瘤”的临床涵义是
雷尼替丁属于哪类H2受体拮抗剂
A.淋巴转移和种植B.血行转移和淋巴转移C.直接蔓延和种植D.直接蔓延和淋巴转移E.血行转移子宫颈癌主要播散的方式
某公司拟新建一车间用以生产受市场欢迎的甲产品,据预测甲产品投产后每年可创造320万元的现金净流量,但公司原生产的A产品会因此受到影响,使其年收入由原来的100万元降低到80万元。假设所得税税率为25%,则与新建车间生产甲产品项目相关的现金净流量为(
下列关于记账凭证的保管说法不正确的是()。
A、Theimportanceofeducation.B、Thedistinctionbetweenschoolingandeducation.C、Theimportanceofeducation.D、Educationand
GoogleClosesInonDoubleClickDealScoreoneforGoogle.TheFederalTradeCommissionruledDee.20thatitwouldnotbloc
最新回复
(
0
)