首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶实反对称矩阵,x,y是实n维列向量,满足Ax=y,证明x与y正交.
设A是n阶实反对称矩阵,x,y是实n维列向量,满足Ax=y,证明x与y正交.
admin
2020-03-16
76
问题
设A是n阶实反对称矩阵,x,y是实n维列向量,满足Ax=y,证明x与y正交.
选项
答案
因为A
T
=-A,Ax=y,所以 (x,y)=x
T
Ax=(A
T
x)
T
x=(-Ax)
T
x=(-y,x),得(x,y)=0.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Io84777K
0
考研数学二
相关试题推荐
设f(x)在[0,+∞)上连续,单调不减且f(0)≥0,试证明函数F(x)=在[0,+∞)上连续且单凋不减(其中n>0).
设二次f(x1,x2,x3)=xAx在正交变换x=Qy下的标准形为y1+y2,且Q的第三列为求A;
设矩阵An×n正定,证明:存在正定阵B,使A=B2.
设A是3×4阶矩阵且r(A)=1,设(1,-2,1,2)T,(1,0,5,2)T,(-1,2,0,1)T,(2,-4,3,a+1)T皆为AX=0的解.求方程组AX=0的通解.
设二次型f(x1,x2,x3)=ax12+ax22+(a一1)x3+2x1x3—2x2x3。若二次型f的规范形为y12+y22,求a的值。
已知f(x)二阶可导,且f(x)>0,f(x)f"(x)一[f’(x)]2≥0(x∈R).(1)证明:f(x1)f(x2)≥f2x1,x2∈R);(2)若f(0)=1,证明:f(x)≥ef’(0)xx(x∈R).
求下列函数f(χ)在χ=0处带拉格朗日余项的n阶泰勒公式:(Ⅰ)f(χ)=;(Ⅱ)f(χ)=eχsinχ.
已知函数f(u)具有二阶导数,且f’(0)=1,函数y=y(x)由方程y一xey-1=1所确定。设z=f(lny一sinx),求
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ)。
设总体X服从参数为λ(λ>0)的泊松分布,X1,X2,…,X2n(n≥2)为来自总体X的简单随机样本,统计量 T1=,则有()
随机试题
患者,男性,40岁,多年来全口牙反复肿胀,曾做过多次治疗,近5~6天再次加重。检查全口牙龈肿,充血,触之出血,肿胀明显,牙周袋超过5mm,压溢脓,X线检查,全口多数牙槽骨有不同程度吸收,无龋。全身乏力,饮食量比一般人大,尿量也多。在下列项目中特别需要检
WHO推荐使用的口服补液盐的钾浓度及液体张力为钾张力
下列有关鉴定的情形中,属于可以申请重新鉴定的有()。
【真题(初级)】按照我国有关法规的规定,企业的税后利润可用于()。
童年儿童游戏属于()。
某县打算在县中心城区建设一个城市广场,决定作出后,县政府成立了由副县长为组长、15人组成的城市广场建设领导指挥办公室,购置各种办公设备花费20万元。然后开始进行拆迁工作,动用3000元安置被迁居民、商户,又请专家进行规划设计,花费了400万元。为了建设一个
根据下面的统计表回答121~125题能源消费构成中,从1981年到1986年变化比例最大的是()。
求
Thoughnotbiologicallyrelated,friendsareas"related"asfourthcousins,sharingabout1%ofgenes.Thatis【C1】______astudy
Onesummernight,onmywayhomefromworkIdecidedtoseeamovie.IknewthetheatrewouldbeairconditionedandIcouldn’tf
最新回复
(
0
)