首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ)。
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ)。
admin
2019-05-11
102
问题
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明存在ξ∈(a,b),使得f
’’
(ξ)=g
’’
(ξ)。
选项
答案
构造辅助函数F(x)=f(x)一g(x),由题设有F(a)=F(b)=0。又f(x),g(x)在(a,b) 内具有相等的最大值,不妨设存在x
1
≤x
2
,x
1
,x
2
∈(a,b)使得f(x
1
)=M=[*]。 若x
1
=x
2
,令c=x
1
,则F(c)=0。 若x
1
<x
2
,因F(x
1
)=f(x
1
)一g(x
1
)≥0,F(x
2
)=f(x
2
)一g(x
2
)≤0,由介值定理知,存在c∈[x
1
,x
2
][*](a,b),使F(c)=0。 在区间[a,c],[c,b]上分别利用罗尔定理知,存在ξ
1
∈(a,c),ξ
2
∈(c,b),使得 F
’
(ξ
1
)=F
’
(ξ
2
)=0。 再对F
’
(x)在区间[ξ
1
,ξ
2
]上应用罗尔定理,知存在ξ∈(ξ
1
,ξ
2
)[*](a,b),有F
’’
(ξ)=0,即 f
’’
(ξ)=g
’’
(ξ)。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/8uV4777K
0
考研数学二
相关试题推荐
设f(χ)=,其中g(χ)=∫0cosχ(1+sin2t)dt,求f′().
设f(χ)=,求.
举例说明多元函数连续不一定可偏导,可偏导不一定连续.
求微分方程(y+)dχ-χdy=0的满足初始条件y(1)=0的解.
证明:当χ>0时,χ2>(1+χ)ln2(1+χ).
设f(χ)连续可导,f(0)=0,f′(0)≠0,F(χ)=∫0χ(χ2-t2)f(t)dt,且当χ→0时,F′(χ)与χk为同阶无穷小,求k.
下列函数在(0,0)处不连续的是
求极限.
求极限。
设f(χ),g(χ)(a<χ<b)为大于零的可导函数,且f′(χ)g(χ)-f(χ)g′(χ)<0,则当a<χ<b时,有().
随机试题
合谷穴主治包括()。
《摸鱼儿》下片所借用的典故有
使原系统的变化率减小,使系统接近平衡态的反馈是______反馈。
女,19岁。因发热倦头痛、烦躁2天,于1月28日入院。查体:血压130/80mmHg,精神差,神志清楚,全身散在瘀点、瘀斑,颈抵抗阳性,Kernig征及Babinski征均阳性。实验室检查:腰穿脑脊液压力240mmH2O,外观混浊,WBCl200×106/
试述合同保全中的代位权。[中山大学2017年研]
公路建设必须招标的项目有()。
依据《中华人民共和国循环经济促进法》中的“循环经济”是指在()等过程中进行的减量化、再利用资源化活动的总称。
A储运公司仓储区占地面积为90000m2,共有8个库房,原用于存放一般货物。3年前,该储运公司未经任何技术改造和审批,擅自将1号、4号和6号库房改存危险化学品。2016年3月14日12时18分,仓储区4号库房内首先发生爆炸,12min后,6号库房也发生
下列关于刑事拘留的表述,正确的是()。
求
最新回复
(
0
)