首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
就k的不同取值情况,确定方程在开区间内根的个数,并证明你的结论.
就k的不同取值情况,确定方程在开区间内根的个数,并证明你的结论.
admin
2014-01-26
83
问题
就k的不同取值情况,确定方程
在开区间
内根的个数,并证明你的结论.
选项
答案
设[*],则f(x)在[*]上连续. 由[*],得f(x)在[*]内的唯一驻点[*]. 由于当x∈(0,x
0
)时,f’(x)<0,当x∈[*]时,f’(x)>0,所以f(x)在[0,x
0
]上单调减少,在[*]上单调增加. 因此x
0
是f(x)在[*]内的唯一最小值点,最小值为y
0
=f(x
0
)=[*] 又因[*],故在[*]内,f(x)的取值范围为[y
0
,0). 故当k[*][y
0
,0),即k<y
0
或k≥0时,原方程在[*]内没有根; 当k=y
0
时,原方程在[*]内有唯一根x
0
; 当是k∈(y
0
,0)时,原方程在(0,x
0
)和[*]内各恰有一根,即原方程在[*]内恰有两个不同的根.
解析
[分析] 令
,讨论方程f(x)=k是在开区间
内根的个数,实质上只需研究函数f(x)在
上图形的特点,f(x)=k在开区间
内根的个数即为直线y=k与曲线y=f(x)在区间
内交点的个数.
[评注] 讨论方程的根、函数的零点、曲线的交点属于同类题型,是涉及导数应用的综合颢。府予以高度重视.
转载请注明原文地址:https://www.kaotiyun.com/show/Ih34777K
0
考研数学二
相关试题推荐
(91年)曲线y=
[2018年]下列函数中,在x=0处不可导的是()
(88年)过曲线y=χ2(χ≥0)上某点A作一切线.使之与曲线及χ轴围成图形的面积为,求:(1)切点A的坐标.(2)过切点A的切线方程;(3)由上述图形绕z轴旋转而成旋转体体积V.
(2000年)设函数f(x)在[0,π]上连续,且∫0πf(x)dx=0,∫0πf(x)cosxdx=0.试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
(92年)设3阶矩阵B≠O,且B的每一列都是以下方程组的解:(1)求λ的值;(2)证明|B|=0.
[2018年]已知总体X的密度函数为X1,X2,…,Xn为来自总体X的简单随机样本,σ为大于0的参数,记σ的最大似然估计量为求
(2006年)在xOy坐标平面上,连续曲线L过点M(1,0),其上任意点P(x,y)(x≠0)处的切线斜率与直线OP的斜率之差等于ax(常数a>0)。(I)求L的方程;(Ⅱ)当L与直线y=ax所围平面图形的面积为时,确定a的值。
设线性方程组与方程(Ⅱ):x1+2x2+x3=a-1有公共解,求a的值及所有公共解.
(08年)设X1,X2,…,Xn是总体N(μ,σ2)的简单随机样本,记(Ⅰ)证明T是μ2的无偏估计量;(Ⅱ)当μ=0,σ=1时,求DT.
试证明n维列向量组α1,α2,…,αn线性无关的充分必要条件是行列式其中αiT表示列向量αi的转置,i=1,2,…,n.
随机试题
商品保管合同是一种经济合同,它是__________和___________为了加速商品流通,妥善保管商品,提高经济效益而签订的明确相互权利、义务关系的协议。
真理的相对性是指真理的()
需留置导尿管的患者是
青霉素不能用于治疗
A、第一阶梯轻度疼痛用药B、第二阶梯中度疼痛用药C、第三阶梯重度疼痛用药D、1级疼痛用药E、2级疼痛用药阿司匹林为
患者,男,57岁。突发意识障碍,血压180/110mmHg,头痛,呕吐,出现右侧肢体偏瘫,脑CT示脑内有高密度区。患者诊断为
A、缓者朝发夕死,重者顷刻而亡B、五疫之至,皆相染易C、众人之病相同D、凡四时之令不正者,乃有此气行也E、夫疫者,感天气之戾气也……多见于兵荒之岁体现疠气传染性强的是
采空区形成地表移动盆地,其位置和形状与矿层倾角大小有关,当矿层为急倾斜时,下列()叙述是正确的。[2005年真题]
微笑是无声的欢迎辞,微笑是无形的友谊之手,微笑是自信的象征,微笑是和睦相处的反映。()
A、Chooseothertime.B、Chooseanotherbank.C、Pullthroughthecrowds.D、Cometothebankinthemorning.A对话中男士提到Thebankisso
最新回复
(
0
)