首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组I:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表示,下列命题中,正确的是( ).
设向量组I:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表示,下列命题中,正确的是( ).
admin
2020-09-25
67
问题
设向量组I:α
1
,α
2
,…,α
r
可由向量组Ⅱ:β
1
,β
2
,…,β
s
线性表示,下列命题中,正确的是( ).
选项
A、若向量组I线性无关,则r≤s
B、若向量组工线性相关,则r>s
C、若向量组Ⅱ线性无关,则r≤s
D、若向量组Ⅱ线性相关,则r>s
答案
A
解析
因向量组I可由向量组Ⅱ线性表示,则R(I)≤R(Ⅱ),即
R(α
1
,α
2
,…,α
r
)≤R(β
1
,β
2
,…,β
s
)≤s,
若α
1
,α
2
,…,α
r
线性无关,则r=R(α
1
,α
2
,…,α
r
).
所以r=R(α
1
,α
2
,…,α
r
)≤R(β
1
,β
2
,…,β
s
)≤s,因此,选A.
转载请注明原文地址:https://www.kaotiyun.com/show/IPx4777K
0
考研数学三
相关试题推荐
如果β=(1,2,t)T可以由α1=(2,l,1)T,α2=(—1,2,7)T,α3=(1,—1,—4)T线性表示,则t的值是________。
设α=(1,-1,a)T是A=的伴随矩阵A*的特征向量,其中r(A*)=3,则a=__________
已知y1=e3x—xe2x,y2=ex一xe2x,y3=一xe2x是某二阶常系数非齐次线性微分方程的3个解,则该方程的通解为y=________。
设A,B均为n阶矩阵,|A|=2,|B|=-3,则|2A*B-1|=_______.
已知α1,α2,α3,β,γ都是4维列向量,且|α1,α2,α3,β|=a,|β+γ,α3,α2,α1|=b,则|2γ,α1,α2,α3|=________.
(2013年)设函数f(x)在[0,+∞)上可导,f(0)=0且=2,证明:(I)存在a>0,使得f(a)=1;(Ⅱ)对(I)中的a,存在ξ∈(0,a),使得f’(ξ)=。
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。(Ⅰ)计算PTDP,其中P=;(Ⅱ)利用(Ⅰ)的结果判断矩阵B—CTA-1C是否为正定矩阵,并证明你的结论。
已知线性方程组(1)a,b为何值时,方程组有解?(2)在方程组有解时,求出方程组的导出组的一个基础解系,并用它表示方程组的全部解.
(97年)设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,I为n阶单位矩阵.(1)计算并化简PQ;(2)证明:矩阵Q可逆的充分必要条件是αTA-1α≠b.
[2003年]设F(x)=f(x)g(x),其中函数f(x),g(x)在(-∞,+∞)内满足以下条件:f/(x)=g(x),g’(x)=f(x),且f(0)=0,f(x)+g(x)=2x.求出F(x)的表达式.
随机试题
食品速冻技术是目前国际公认的最佳食品储藏加工技术。()
增强桩核固位的方法,除了
水肿的常见临床表现是
下列关于公司型基金的特点的说法中正确的是()。
勒纳指数越大,表明( )。
【2015年济南市市中区】转变学习方式实质上是教育价值观、人才观和培养模式的变革。()
中学生李某学业成绩良好,在一次数学单元测试前,他认为这类考试小菜一碟,未加以重视,结果考试成绩相当不理想。后来有机会参加学科竞赛,他认为能否获奖将很大程度上影响自己的升学,发誓一定要获奖,结果事与愿违。阐述耶克斯—多德森定律。
以下现象,与液体表面张力无关的是:
我国近代史上第一次提出德、智、体、美四育并重的人物是
设A为三阶方阵,A的每行元素之和为5,AX=0的通解为k1,设β=,求Aβ.
最新回复
(
0
)