首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有三个线性无关的特征向量,且λ=2为A的二重特征值,求可逆矩阵P,使得P一1AP为对角矩阵.
设有三个线性无关的特征向量,且λ=2为A的二重特征值,求可逆矩阵P,使得P一1AP为对角矩阵.
admin
2019-01-05
48
问题
设
有三个线性无关的特征向量,且λ=2为A的二重特征值,求可逆矩阵P,使得P
一1
AP为对角矩阵.
选项
答案
因为A有三个线性无关的特征向量,所以λ=2的线性无关的特征向量有两个,故r(2E一A)=1. 而2E一A=[*],所以x=2,y=一2. 由|λE一A|=[*]=(λ一2)2(λ一6)=0得λ
1
λ
2
=2,λ
3
=6. 由(2E一A)X=0得λ=2对应的线性无关的特征向量为α
1
=[*] 由(6E一A)X=0得λ=6对应的线性无关的特征向量为α
3
=[*] [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/HqW4777K
0
考研数学三
相关试题推荐
设二维离散型随机变量(X,Y)的联合概率分布为试求:(Ⅰ)X与Y的边缘分布律,并判断X与Y是否相互独立;(Ⅱ)P{X=Y}。
设A,B是任意两个随机事件,又知BA,且P(A)<P(B)<1,则一定有()
已知在10件产品中有2件次品,在其中任取两次,做不放回抽样。求下列事件的概率:(Ⅰ)两件都是正品;(Ⅱ)两件都是次品;(Ⅲ)一件是正品,一件是次品;(Ⅳ)第二次取出的是次品。
设平面区域D由曲线y=及直线y=0,x=1,x=e2所围成,二维随机变量(X,Y)在区域D上服从均匀分布,则(X,Y)关于X的边缘概率密度在x=2处的值为________。
设A=(Ⅰ)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3;(Ⅱ)对(Ⅰ)中任意向量ξ2和ξ3,证明ξ1,ξ2,ξ3线性无关。
(已知A,B为三阶非零方阵,A=,B1=,B2=,B3=为齐次线性方次线性方程组Bx=0的三个解向量,且Ax=B3有解。求a,b的值;
设抛物线y=ax2+bx+c过原点,当0≤x≤1时,y≥0,又已知该抛物线与x轴及直线x=1所围图形的面积为,试确定a,b,c的值,使所围图形绕x轴旋转一周而成的旋转体的体积V最小。
计算二重积分其中D是由曲线y=ex与直线y=x+1在第一象限围成的无界区域.
(01年)已知fn(χ)满足f′n(χ)=fn(χ)+χn-1eχ(n为正整数),且fn(1)=,求函数项级数fn(χ)之和.
(1)证明两个上三角矩阵A和B的乘积AB还是上三角矩阵;并且AB的对角线元素就是A和B对应对角线元素的乘积.(2)证明上三角矩阵A的方幂Ak与多项式f(A)也都是上三角矩阵;并且Ak的对角线元素为a11k,a2k,…,annk;f(A)的对角线元素为f(
随机试题
不宜选用口服补液的是
玻璃板液位计原理是()。
下列疾病中,不属于非特异性感染的是
A.阴阜B.大阴唇C.小阴唇D.阴道口E.阴道前庭发生学相当于男性阴囊
患者,男,66岁。3年前患急性前壁心肌梗死,1年前诊断为慢性心力衰竭,左室射血分数33%。患者平时无症状,应当长期服用的药物不包括
注射剂中加入焦亚硫酸钠的作用为
与肝相表里的是
下列句子中,加下划线的词语的意义解释错误的一项是()。
应该看到,进入新时代的中国特色社会主义,首要的障碍就是跨越发展方式、经济结构、增长动力的转型关口,创新驱动全面转型、开放促进进步不仅是中国走向现代化强国的重要手段,更是根本出路。尽管建设创新型国家和营造全面开放新格局的目标不可能一蹴而就,但能否成为世界科技
SportsManyanimalsengageinplay,buthomosapiensistheonlyanimaltohaveinventedsports.Sincesportsareaninventi
最新回复
(
0
)